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Abstract— 

In this project, we intended to develop techniques for 
multimodal emotion detection, one modality being brain 
signals via fNIRS, the second modality being face video and 
the third modality being the scalp EEG signals. EEG and 
fNIRS provided us with an “internal” look at the emotion 
generation processes, while video sequence gave us an 
“external” look on the “same” phenomenon. 
 
Fusions of fNIRS with video and of EEG with fNIRS were 
considered. Fusion of all three modalities was not considered 
due to the extensive noise on the EEG signals caused by facial 
muscle movements, which are required for emotion detection 
from video sequences. 
 
Besides the techniques mentioned above, peripheral signals, 
namely, respiration, cardiac rate, and galvanic skin resistance 
were also measured from the subjects during “fNIRS + EEG” 
recordings. These signals provided us with extra information 
about the emotional state of the subjects. 
 
The critical point in the success of this project was to be able 
to build a “good” database. Good data acquisition means 
synchronous data and requires the definition of some specific 
experimental protocols for emotions elicitation. Thus, we 
devoted much of our time to data acquisition throughout the 
workshop, which resulted in a large enough database for 
making the first analyses. Results presented in this report 
should be considered as preliminary. However, they are 
promising enough to extend the scope of the research. 
 

Index Terms—Emotion detection, EEG, video, near-infrared 
spectroscopy 
 
 

                                                           
This report, as well as the source code for the software developed during the 
project, is available online from the eNTERFACE’06 web site: 
www.enterface.net. 
 

I. INTRODUCTION 
Detection and tracking of human emotions have many 
potential applications ranging from involvement and 
attentiveness measures in multimedia products to 
emotion-sensitive interactive games, from enhanced 
multimedia interfaces with more human-like interactions 
to affective computing, from emotion-sensitive 
automatic tutoring systems to the investigation of 
cognitive processes, monitoring of attention and of 
mental fatigue. 
 
The majority of existing emotion understanding 
techniques is based on a single modality such as PET, 
fMRI, EEG or static face image or videos.  The main 
goal of this project was to develop a multimodal 
emotion-understanding scheme using hemodynamic 
brain signals, electrical brain signals and face images. 
Studies about the way to fusion the different modalities 
was also an important goal of the work. 

Psychologists agree that human emotions can be 
categorized into a small number of cases. For example, 
Ekman et al. [1] found that six different facial 
expressions (fearful, angry, sad, disgust, happy, and 
surprise) were categorically recognized by humans from 
distinct cultures using a standardized stimulus set. In 
other words, these facial expressions were stable over 
races, social strata and age brackets, and were consistent 
even in people blind by birth. 

Nevertheless, there are several difficulties in automatic 
human emotion identification. First, the straightforward 
correlation of emotions with neural signals or with facial 
actions may not be correct since emotions are affected 
by interactions with the environment. As a result, the 
unfolding of emotions contains substantial inter-subject 
and intra-subject differences, even though the 
individuals admit or seem to be in the claimed emotional 
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situation. Moreover, to design experiments to single out 
a unique emotion is a very challenging task. These imply 
that, even small changes in the experimental setup may 
lead to non-negligible differences in the results. 

The majority of existing emotion understanding 
techniques is based on a single modality such as PET, 
fMRI, EEG or static face image or videos.  The main 
goal of this project was to develop a multimodal 
emotion-understanding scheme using functional, 
physiological and visible data. As an intermediate step, it 
was necessary to determine the feasibility of fusing 
different modalities for emotion recognition. These 
modalities are functional Near Infrared Spectroscopy 
(fNIRS) electroencephalogram (EEG), video and 
peripheral signals. Note that these modalities provide us 
with different aspects of the “same” phenomenon. fNIRS 
and EEG try to detect  functional hemodynamic and 
electrical changes, peripheral signals give an indication 
of emotion-related changes in the human body and video 
signal captures the “visible” changes caused by emotion 
elicitation. 

In the rapidly evolving brain-computer interface area, 
fNIRS (functional Near Infrared Spectroscopy) 
represents a low-cost, user-friendly, practical device for 
monitoring the cognitive and emotional states of the 
brain, especially from the prefrontal cortex area. fNIRS 
detects the light (photon count) that travels through the 
cortex tissues and is used to monitor the hemodynamic 
changes during cognitive and/or emotional activity. 
 
The second modality to estimate cortical activity is EEG. 
Using the scalp electrodes, useful information about the 
emotional state may be obtained as long as stable EEG 
patterns on the scalp are produced. EEG recordings 
capture neural electrical activity on a millisecond scale 
from the entire cortical surface while fNIRS records 
hemodynamic reactions to neural signals on a seconds 
scale from the frontal lobe. In fact, electrical activity 
takes place in order of milliseconds, whereas 
hemodynamic activity may reach its peak in 6-10 
seconds and may last for 30 seconds. In addition to these 
modalities, peripheral signals, namely, galvanic skin 
response (GSR), respiration and blood volume pressure 
(from which we can compute heart rate) were also 
recorded. 
 
We have combined these four monitoring modes of 
emotions in two separate pairs, namely: i) fNIRS, ii) 
EEG, iii) peripheral signals, iv) image or video. Notice 
that EEG is very sensitive to electrical signals emanating 
from facial muscles while emotions are being expressed, 
hence EEG and video modalities cannot coexist. In 

contrast, fNIRS is the modality that can be combined 
with either video signals or with EEG signals.  
 
In summary, the first short-term goal of the project has 
been to build a reliable database that can be used for all 
related future research. The second such goal was to 
prove the viability of a multi-modal approach to emotion 
recognition, both from instrumentation and signal 
processing points of view. The final long-term aim is to 
build an integrated framework for multi-modal emotion 
recognition for both brain research and affective-
computing aspects. 
 

II. MEASUREMENT SETUP AND EMOTION 
ELICITING 

A. Instrumental Setup 
 
To detect and estimate emotions based on brain as well 
as physiological signals the following sensor setup was 
prepared:  (Figure 1): 

• fNIRS sensor to record frontal brain activity, 
• EEG sensor to capture activity in the rest of the 

brain, 
• Sensors for acquiring peripheral body processes: 

a respiration belt, a GSR (Galvanic Skin 
Response) and a plethysmograph (blood volume 
pressure) 

 
All these devices were synchronized using a trigger 
mechanism. Notice that EEG and fNIRS sensor 
arrangements partially overlap, so that there is no EEG 
recording on the front. Similarly the fNIRS device 
covers the eyebrows, occluding one of the image 
features for emotion recognition  

 
Figure 1 Schematics of EEG and fNIRS acquisition.  
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The Video-fNIRS acquisition scenario is composed 
of three computers, Stimulus Computer, fNIRS Computer 
and Video Computer, each one with the following 
purpose (Figure 2): 

 Stimulus Computer shows recorded stimuli to 
the subjects, sends synchronization signal via the 
parallel port to the fNIRS Computer and stores 
stimuli start and end instants in a log file. 

 fNIRS Computer acquires fNIRS data from the 
fNIRS device.  

 Video Computer acquires video data from a 
Sony DFW-VL500 camera.  

 
Synchronization becomes a critical issue when more 

than one modality is to be recorded, especially when 
they are recorded on different computers. We have used 
two synchronization mechanisms: In the first 
mechanism, the Stimulus Computer sends a signal to the 
fNIRS Computer each time a stimulus is shown in the 
screen via the parallel port. In the second mechanism, 
the Stimulus Computer writes to a log file the instants, 
with millisecond precision, of each stimulus. This log 
file is used after recording in the Video Computer to 
mark the frames corresponding to each stimulus. Before 
the recording process, the Stimulus Computer and the 
Video Computer clocks are synchronized using a free 
internet NTP server localized in Zagreb 
(ri.ntp.carnet.hr).  

 
 
Figure 2 Schematics of Video and fNIRS acquisition. 
 

B. Emotion Eliciting Images 
 
The emotions were elicited in subjects using images 
from the IAPS (International Affective Picture System) 
9. Several studies have shown the usefulness of images 
to elicit emotional responses that trigger discriminative 
patterns in both the central and peripheral nervous 
system (10, 11). The IAPS contains 900 emotionally 
evocative images evaluated by several American 

participants on two dimensions of nine points each (1-9): 
valence (ranging from positive to negative or unpleasant 
to pleasant) and arousal (ranging from calm to exciting). 
The mean and variance of participant judgments for both 
arousal and valence are computed from these evaluation 
scores. 
 
We chose images from the IAPS that corresponded to 
the three emotional classes we wanted to monitor: calm, 
exciting positive and exciting negative. This was 
performed by first selecting pictures from IAPS values 
(1) and then eliminating particular images based on 
redundancy or particularity of context (for example 
erotic images were removed). This selection resulted in 
106, 71, and 150 pictures respectively for these classes. 
The selection of the three images subsets, corresponding 
to the emotional states of interest was instrumented via 
empirical thresholds on valence and arousal scores:  
 

: 4; 4 6calm arousal valence< < <  
: 6.8;

( ) 2;

5

positive exciting valence
Var valence

arousal

>
<

>

 (1) 

: 3; 5negative exciting valence arousal< >  
 

C. Experimental Protocol for fNIRS, EEG and 
Peripheral Signals 
 
The stimuli to elicit the three target emotions were the 
above selected images from the IAPS. During the 
experiment, the subject is seated in front of the computer 
screen his/her physiological responses (i.e.: fNIRS, EEG 
and peripheral activity) are being measured. The stimuli 
are brought to the screen in random order. The subject is 
asked to watch the images and be aware of his emotional 
state. In this study, we recorded data from five subjects 
using the Biosemi Active 2 acquisition system with 64 
EEG channel and the peripheral sensors. Due to 
occlusion from fNIRS sensor arrangement, we had to 
remove the following ten frontal electrodes: F5, F8, 
AF7, AF8, AFz, Fp1, Fp2, Fpz, F7, F6, which left us 
with 54 channels. All EEG signals were recorded at 
1024 Hz sampling rate except the first session of 
participant 1 that was recorded at 256 Hz. 
 
The protocol is detailed in Figure 3 each stimulus 
consists of a block of five pictures from the same class, 
this to insure stability of the emotion over time. Each 
picture is displayed on the screen for 2.5 seconds leading 
to a total of 12.5 seconds per block. Blocks of different 
classes are displayed in random order to avoid 
participant habituation. A dark screen precedes each 
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Video acquisition 
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block with a cross in the middle to attract user attention 
and as a trigger for synchronization. The exhibition of 
the five block images is followed by a dark screen for 10 
seconds in order for the fNIRS signals to return to their 
baseline level. 
 
Emotions are known to be very dependent on past 
experience so that one can never be very sure whether a 
block elicits the expected emotion or not. To avoid this 
problem, we asked the participants to self-assess their 
emotions after the dark-screen resting period, by giving 
a score between 1 and 5 for respectively valence and 
arousal components. This reflection period is not time-
limited, which in addition has the benefit of providing an 
interval for relaxing and/or stretching the muscles. 
 
Self-assessment of the images is a good way to have an 
idea about the emotional stimulation “level” of the 
subject. However, since noting down this evaluation 
necessitates some movements in the subject and enforces 
an additional a prefrontal activity in the brain, some time 
should elapse for the brain to return to “baseline” before 
the next image stimulus is offered. 
 
Because of their tight placement, EEG and fNIRS 
devices can cause some discomfort after a while. For this 
reason, the whole experiment was divided into three 
sessions of approximately 15 minutes each. Each session 
contained 30 blocks, hence 150 images; therefore an 
experiment consists of a total of 90 blocks or 450 images 
displayed. The calm and exiting positive classes, 
containing less than the target number of images were 
completed with random duplications in different 
sessions. 
 

 
Figure 3 Protocol description 

 
 

D. Experimental Protocol for Video and fNIRS 
Three kinds of emotions, namely neutral, happiness 

and disgust, are stimulated using series of images and 
video sequences on the screen of the Stimulus Computer. 

With this purpose, two protocols have been tested during 
the recordings. 
The first protocol, the one used in Session 1, consisted of 
5 videos for each emotion from the DaFEx Database, 
separated with a 20 seconds of a fixation cross (a white 
cross over a black background). The second protocol, 
used in Session 2, was an improvement of the first 
protocol. It was noticed that the videos were not enough 
to make the subjects feel the emotions. In order to make 
the subject to feel the expected emotion better, a 
sequence of 5 images collected from the internet were 
added before the first video of the “happy” and “disgust” 
sequences. 
 

III. DATABASE COLLECTION 
 

A. Video and fNIRS database 
In the Video-fNIRS database there are totally 16 

subjects. While one experiment session is performed for 
10 subjects, two sessions of experiments in different 
days are carried out for the other six subjects. There are 
six women and 10 men subjects with the average age 25 
in the database. 

The structure of the database is designed in order to 
make the video post-processing as easy as possible. 
Video data are recorded frame by frame into separate 
files. Each filename is formed by subject name, date, 
time and the stimuli type as follows: 

 
SubjectName-YYYYMMDD-HHMMSS-
FFF_STIMULI.jpg 

where these characters denote: 
 

 YYYYMMDD: year in four digit format and 
month and day in two digit format 

 HHMMSS: time expressed in hour, minutes and 
seconds using 24 hours format 

 FFF: milliseconds 
 STIMULUS: type of stimulus (happy, disgust, 

neutral) shown to the subject when the frame 
was recorded 

  
Session 3Session 2 

Experiment :  

Trial 1 
calm 

Trial 2 
positive 

Trial 30 
negative 

… 

3s 12.5s 10s ?s

Self-
assessment

Dark 
screen 

Dark screen 
with cross 

Block of 5 
images 

Trial : 

Session : 

Session 1 
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Figure 4 The structure of the database 
 

Moreover, frames are stored in different folders 
depending on the type of stimulus. Under these 
conditions, a subject with name Arman recorded in 
session 1 on the 1st of August would have a folder in the 
video database with the structure shown in Figure 4, 
where the file names of the three sample frames are:  
 
Arman-20060801-182136-599_DISGUST.jpg,  
Arman-20060801-182641-586_HAPPY.jpg and  
Arman-20060801-181726-131_NEUTRAL.jpg.  
 

 The frames corresponding to the cross sign, at the 
beginning of each recording block, are marked as 
NOTHING since the data is not related to any emotional 
state. 
 

B. EEG + fNIRS recordings 
 

We recorded data from five participants all male, and 
right handed, with age ranging from 22 to 38. For each 
subject data are divided in three repertories, one per 
session. For each session we obtained three files 
categories: one concerns EEG and peripheral 
information, another concerns fNIRS information and 
the last contains self-assessments of participants. 

 

EEG and peripheral data 
 

EGG, peripheral and the trigger signals are stored in the 
same BDF (Biosemi Data Format) file. This format is 
quite the same as the EDF (European Data Format) so 
that most software could use it without problems; 
however you can find a converter from BDF to EDF at 
http://www.biosemi.com/download.htm. 
 
Remember that a trigger is sent in the beginning of each 
block of images as well as for the start of the protocol. 

For more convenience, we extracted the samples where 
such a trigger appears and save them as markers in a 
MRK file, except for the first trigger. 
 
Finally we obtained two files: a BDF file with EEG and 
peripheral signals, and a MRK file containing index of 
samples for each block of images. These files are named 
as follow: 

 
PARTA_IAPS_SESB_EEG_fNIRS_DDMMAAAA.bdf 
PARTA_IAPS_SESB_EEG_fNIRS_DDMMAAAA.bdf
.mrk 

 
where A is the participant number (1-5), B is the session 
number (1-3) and DDMMAAAA represents the date of 
the recording. 

Common data 
In this section, we describe the files that are common to 
both modalities and concern the protocol in itself: 

• IAPS_Images_EEG_fNIRS.txt, contains three 
columns, one per session, with the names of the 
IAPS pictures used in this study; 

• IAPS_Eval_Valence_EEG_fNIRS.txt and 
IAPS_Eval_Arousal_EEG_fNIRS.txt contains 
in three columns the valence or arousal value for 
each image; 

• IAPS_Classes_EEG_fNIRS.txt list in three 
columns the associated classes we considered 
for each block of pictures. Labels can be 
“Calm”, “Pos” or “Neg”. This can be useful if 
one does not want to take into account self-
assessment of participants. 

 
PartASESB.log lists self-assessment of participants. As 
for the EEG files, A is the number of the participant 
while B is the session number 
 

C. fNIRS data 
fNIRS data were stored in ASCII format with the file 
name, 
 
SubjectA_SesB_EEG_fNIRS_DDMMAAAA.txt 
 
for EEG + fNIRS recordings and 
 
SubjectA_SesB_video_fNIRS_DDMMAAAA.txt 
 
for video + fNIRS recordings. 
 
where A is the participant number and B is the session 
number. 
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Note that, these files contain raw data, i.e., time-series of 
concentration changes for three wavelengths. A 
MATLAB program (loadnirs.m) is needed to convert 
this signal to oxygenated and deoxygenated hemoglobin 
values. 
 

D. Practical considerations and problems 
The most challenging task was making recordings 
simultaneously from different devices. Each device was 
designed to be used alone, and thus were not very 
suitable for multimodal recordings. For instance, EEG 
cap and fNIRS probe were clearly obstructing each 
other’s functioning. Thus a special probe should be 
designed which may hold both EEG electrodes and 
fNIRS light emitting diode and detectors. 
 
Synchronization was the most time consuming task 
during the workshop. It took a long time before we 
arrived at a reasonable and reliable solution for 
synchronizing the devices. 
 
Deciding on the protocol was perhaps the most critical 
issue in this study. We used a well-known database for 
EEG and fNIRS recordings, but we tried to adapt it for 
our purposes. For video and fNIRS, we actually wanted 
from the subjects to mimic what they saw. Thus it may 
be argued whether “mimicking” was the same with 
“feeling” or not. 

 
For video and fNIRS recordings, it is clear that facial 
muscle movements caused some noise for fNIRS 
signals. 
 
We could not have the chance to perform the recordings 
in an isolated experiment room. Thus, environmental 
noise definitely corrupted our recordings. 
 
During EEG and fNIRS recordings many participants 
reported that they had a headache at the end of each 
session. This is due to the different caps that become 
more and more uncomfortable along time. More over, 
they also reported that they never felt some strong 
positive response while they found negative images a bit 
too hard. Several participants claimed that the effects of 
the emotional stimuli decrease after viewing many 
images in succession, suggesting that they became 
accustomed to the emotional content. 
 

IV. BRAIN SIGNAL ANALYSIS TECHNIQUES 

A. EEG Analysis Techniques 
Prior to extracting features from EEG data and 

performing classification, we need to pre-process signals 

to remove noise. Noise can originate from several 
sources: environment (mainly 50Hz), muscles activity 
and fNIRS noise. The environmental noise is the easiest 
to remove by applying a bandpass filter in the 4-45 Hz 
range. This band is selected because the frequency 
intervals of interest in EEG are the θ (4-8Hz), α (8-
12Hz), β (12-30Hz) and γ (30-45Hz) bands. Muscle 
activities such as eye-blinks or jaw clenching 
contaminate EEG signals with strong artifacts. In this 
study, no special effort was done to remove these 
artifacts, but subjects were requested to avoid these 
movements during recordings. One unexpected source of 
contamination was the fNIRS light activations. As can 
be observed in Figure 5 fNIRS light activations cause 
spikes in the EEG recordings, especially in the frontal 
area. For the moment, no appropriate filtering was 
designed to remove this type of noise, though 
independent component analysis (ICA) technique is one 
potential tool. Finally, to obtain some better focalization 
on brain activity, we computed a Laplacian reference 
signal, which consists in subtracting for each electrode 
the mean signal of its neighbors. 

 

 
Figure 5 EEG signal sample after pre-processing. fNIRS 
noise can be observed approximatively every 700ms 
especially on the frontal electrodes (in red) 

 
Following the preprocessing stage, there are various 
alternatives for feature extraction. One alternative is to 
collect EEG energies at various frequency bands, time 
intervals and locations in the brain. This approach results 
typically in oversized feature vectors. As a second 
alternative, Aftanas & al. [10] proved the correlation 
between arousal variation and power in selected 
frequency bands and electrodes. These features have also 
been used in 12 to assess the arousal dimension of 
emotions. In this project we opted for this first set of 
features. A third possibility is to compute the STFT 
(Short Term Fourier Transform) on 12.5 second 
segments of each trial and electrode, assuming 
stationarity of the signal within the chosen widow 
length. This allows taking into account time evolution as 
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well as spatial distribution of energy. Each atom 
resulting from the STFT is then considered as a feature 
or relevant features can be selected by filter or wrapper 
methods [13]. 

B. Peripheral Signals Analysis Techniques 
Several studies have shown the effectiveness of 

peripheral sensors in recognizing emotional states (see 
12, 13, 15). While there are many variables from the 
autonomous nervous system that can be used to 
determine affective status, we will focus to three such 
variables: GSR, respiration and blood volume pressure. 
All these signals were first filtered by a mean filtering to 
remove noise   

GSR provides a measure of the resistance of the skin. 
This resistance can decrease due to an increase of 
sudation, which usually occurs when one is feeling an 
emotion such as stress or surprise. Lang [11] also 
demonstrates correlation between mean GSR level and 
arousal. In this study, we recorded GSR by positioning 
two dedicated electrodes on the top of left index and 
middle fingers. In order to assess the change in 
resistance, we used the following features:   

 
Value Comment 

Mean skin resistance over the 
whole trial 

Estimate of general arousal 
level 

Mean of derivative over the 
whole trial Average GSR variation 

Mean of derivative for 
negative values only 

Average decrease rate during 
decay time 

Proportion of negative 
samples in the derivative 

Importance and duration of 
the resistance fall 

 
 

The mean value of samples within a session gives us 
an estimate of the general arousal level of the emotion 
while the mean derivative reveals the variability of the 
signal. Computing the mean of derivative for negative 
values only, or the proportion of negative values for the 
whole session indicates the importance of the fall in 
resistance. 

Respiration was recorded by using a respiration belt, 
providing the chest cavity expansion over time. 
Respiration is known to correlate with several emotions 
[13]. For example slow respiration corresponds to 
relaxation while irregularity or cessation of respiration 
can be linked to a surprising event. To characterize this 
activity we used features both in the time and frequency 
domain. In the frequency domain we computed energy 
by FFT (Fast Fourier Transform) in 10 frequency bands 
of size Δf = 0.25 ranging from 0.25Hz to 2.75Hz. Others 
features are listed below:  ( 

 
Value Comment 

Power in the 0.25Hz-2.75Hz 
(Δf = 0.25Hz) bands (10 
features) 

- 

Mean of respiration over the 
whole trial Average chest expansion 

Mean of derivative over the 
whole trial 
Standard deviation 

Variation of respiration signal 

Maximum value minus 
minimum value 

Dynamic range or greatest 
breath 

 
 
Finally, a plethysmograph was placed on the thumb of 

the participant to record his blood volume pressure. This 
device permits to analyze both relative vessel 
constriction, which is a defensive reaction [13], and 
heartbeats that are clearly related to emotions especially 
in terms of heart rate variability (HRV) (see 11, 13, 15). 
Heart beats were extracted from the original signal by 
identification of local maxima, and then the BPM (Beat 
Per Minute) signal was computed for each inter-beat 
periods i. This enables us to approximate HRV using 
standard deviation or mean derivative of the BPM 
signal. The following features were extracted from blood 
volume pressure:  

 
Value Comment 

Mean value over the whole 
trial Estimate of general pressure 

Mean of heart rate over the 
whole trial - 

Mean of heart rate derivative 
Standard deviation of heart 
rate 

Estimations of heart rate 
variability 

 
 
Finally, all these features were concatenated in a 

single features vector of size 22, representing the 
peripheral activity. 

 

C. fNIRS Analysis Techniques 
 
fNIRS provides us with time series of oxygen-rich 
(HbO2) and oxygen-poor (Hb) blood concentration 
changes on the cortical surface. fNIRS signals should be 
preprocessed first to eliminate high frequency noise and 
low frequency drifts. Previous studies have shown that 
involvement of prefrontal cortex in the emotion 
processing is concentrated in the medial frontal cortex. 
Thus, it may be a good choice to concentrate on the 
middle 8 detectors. 
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Since the hemodynamic response mainly gives an idea 
about the area of activation, the first line of action has 
been to detect the presence of active regions in the brain 
and their variation with stimuli. On the other hand, 
activated regions are known to vary from subject to 
subject, and even within subject in the course of 
experiments. It follows than that detection schemes 
based only on single subject data may not be reliable 
enough. One solution to this problem is the use of 
multivariate methods, that is, simultaneous processing 
and modeling of data from a group of subjects. Some 
well-known examples are principal component analysis 
and independent component analysis. This type of 
methods may give us the emotion-related components. 
 
The noise caused by facial muscle movement aroused as 
an important source of contamination for fNIRS signals. 
Since for some detectors this noise is so large with 
respect to the signal, it is (and will be) hard to extract 
cognitive and emotional component from the signals. 
 

D. Fusion techniques 
The main fusion strategies are data-level fusion, 

feature-level fusion and decision-level fusion. Due to the 
disparity of the nature of data in the three modalities, 
data fusion is not conceivable. On the other hand, fusion 
at the more abstract levels, feature level and decision 
level, are both feasible and desirable.  

fNIRS-EEG fusion:  Recall that the link between 
electrical activity and hemodynamic activity is supplied 
by the neurocoupling mechanisms. The EEG modality in 
one part and the video or fNIRS modality on the other 
part, have orders of magnitude difference in their relative 
time scales. However, feature/decision level fusion is 
possible if one generates fNIRS and EEG feature vectors 
and/or decision scores for each block of emotional 
stimuli (12.5 seconds long in our experiment). 
Alternatively, video features and fNIRS features can be 
fused at the feature or decision level on a block-by-block 
basis.  

V. VIDEO BASED EMOTION DETECTION 
Video signals are quite rich in facially expressed 

emotions, especially for the happiness and disgust cases. 
Facial expressions are formed by motions or 
deformations of mouth, eyebrows and even of eyelids. 
Also, facial skin may get deformed, such as wrinkles in 
the forehead or inflations on the cheeks. In this particular 
experiment, however, we do not have access to the 
eyebrow information due to the occlusion by the fNIRS 
probe on the forehead (Figure 6). 

We have therefore extracted facial features from 
mouth and eyes, and then analyzed and classified the 
data as in the block diagram of Figure 6. We used 
comparatively two methods for facial feature 
segmentation:  active contour-based technique [3, 4] and 
active appearance models (AAM) [8]. For the 
classification we are using Transferable Belief Model 
(TBM) method [2, 7]. 
 

Feature extraction

Analysis

Classification

 
 

Figure 6 Illustration of the feature extraction, analysis 
and classification system for emotion detection. 

 
A. Active Contours for Facial Feature Extraction 

Active contours are widely used for segmentation 
purposes. However first, the face itself and the eyes must 
be located. We have used the detector in the Machine 
Perception Toolbox (MPT) [5]. We had to execute the 
face detection in each image and bypass its tracking 
ability due to stability problems. This in turn, slows 
down the process. Wherever MPT cannot detect a face, 
we recurred to the OpenCV library face detection tool. 
The OpenCV algorithm detects faces in general with 
higher precision albeit at lower speeds than the MPT. 

Following fiducial point localization, lips, eyes and 
eyebrows are segmented by fitting curves automatically 
and frame-by-frame, using the algorithm described in [3, 
4]. This algorithm uses a specific predefined parametric 
model such that all the possible deformations can be 
taken into account. The contours are initialized by 
extracting certain characteristic points, such as eye 
corners, mouth corners and eyebrows corners 
automatically. In order to fit the model to the contours, a 
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gradient flow (of luminance or of chrominance) through 
the estimated contour is maximized. As remarked above, 
the model fitting to the eyebrows and mouth was not 
satisfactory, the first due to the occluding fNIRS probe 
and the latter whenever there were beard and moustache 
(Figure 7). Even in the absence of such impediments, we 
have observed that this algorithm works well only when 
the facial images are neutral (open eyes and closed 
mouth). Finally, the tracking mode of this algorithm was 
not available during the workshop. Therefore, we 
applied the algorithm described in the next section in 
order to have working results. 

 

 
 
Figure 7 Examples of correct (left) and incorrect (right) 

localizations 
 

B. Active Appearance Models (AAM) 
Using Active Appearance Models (AAM) is a well-

known technique for image registration [8], in which 
statistical models of appearances are matched to images 
iteratively by modifying the model parameters that 
control modes of shape and gray-level variation. These 
parameters are learned from a training dataset. The 
training of the AAM algorithm is initiated with manually 
annotated facial images, as illustrated in Figure 8. 37 
landmark points are chosen from the easily identifiable 
locations on the face, and their 2D coordinates constitute 
the shape vector for the face images. In this study, they 
are chosen appropriately to cover the face, mouth and 
eye regions for eventual segmentation of face contour, 
lips and eyes. After creating the shape vectors from all of 
the training images, they are aligned in a Euclidean 
frame by Procrustes algorithm. Finally, principal 
component analysis (PCA) technique is applied to 
reduce the dimension of the shape vectors, resulting in 
11 modes of shape variation that account for 95 percent 
of variance in the training set.  

 

 
Figure 8 Annotated image with 37 landmark points 

 
The next step is to create the texture vectors for the 

training images. For this purpose, Delaunay triangulation 
(Figure 9) is performed so that the triangular patches are 
transformed to the mean shape (Figure 10). Thus, shape-
free patches of pixel intensities are obtained. Also, to 
diminish the effect of lighting differences, a further 
alignment in the gray level is performed. Finally, PCA is 
applied to the texture vectors as in the shape vectors. 

 

 
Figure 9 Delaunay triangulation 
 

 
Figure 10 Texture image after transforming to mean 

shape 
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The third and final step of the algorithm is to 
combine shape and texture vectors. These two types of 
vectors are concatenated into one big feature vector, 
after appropriate weighting. These weighting 
coefficients are obtained using an estimation procedure. 
A final PCA is applied to this combined vector, the 
resulting vectors being called the appearance vector.  

The goal of AAM is to fit models to the images and 
to synthesize various facial appearances. This is 
accomplished by modifying and optimizing the 
combination weights. In face modeling, best pose 
parameters, which are planar translations, rotations and 
scaling, are estimated. Briefly, this optimization is 
realized by iteratively minimizing the difference 
between the input image pixel intensities and the model 
instances. 

In this study, an AAM is trained and tested for a 
subject. Some sample results are given in Figure 11, 
where the detected facial contours corresponding to 
happiness and disgust moods are tracked in video. For 
this subject total 26 training images were chosen from 
the training video database. These images were chosen 
in order to include different neutral, disgust and 
happiness expressions with varying head pose and eye 
motion to cover sufficient amount of face motion. 

 

 
Figure 11 Detected facial contours in video 
corresponding to happiness (above) and disgust (bottom) 
 
 

C. Classification 
In this study, Transferable Belief Model (TBM) 

algorithm [7], which is based on belief theory, is applied 
for the classification of anger, disgust and neutral 
expressions. First, some facial distances, as illustrated in 
Figure 6, are calculated from the extracted contours.  
These distances are: eye opening (D1), distance between 
the inner corner of the eye and the corresponding corner 
of the eyebrow (D2), mouth opening width (D3), mouth 
opening height (D4), distance between a mouth corner 
and the outer corner of the corresponding eye. 

Briefly, in the TBM algorithm each facial expression 
is characterized by a combination of symbolic states, 
which are evaluated from the calculated distances. For 
distance Di, the symbolic state is found by thresholding. 
In Figure 12, the representation of the symbolic states 
{C+, C-, S, SC+, SC} and the thresholds (a, b, c, d, e, f, 
g, h) are shown. While states C+, C-, S are representing 
positive activation, negative activation and no activation, 
respectively, other two states are denoting the doubt 
between activation and no activation. The threshold 
values are found in a training phase automatically as 
described in [7]. In Figure 12, the y-axis shows the piece 
of evidence (PE) according to the belief theory. After 
having found the states and the PEs for each symbolic 
state of each distance, conjunctive combination rule, 
which is explained in [7], is applied to combine the 
information coming from each distance. With this rule, 
combined PE for each expression is calculated, and the 
decision is made by choosing the expression that gives 
highest value for the combined PE. Details about the 
fusion process can be found in [7].  

 

 
 
Figure 12 Characterization of a distance with thresholds 
 
 

VI. CONCLUSIONS AND FUTURE WORK 
 

Project 7 entitled “Emotion Detection in the Loop 
from Brain Signals and Facial Images “ at Dubrovnik 
eNTERFACE had three goals in mind:  

i) Common database building 
ii) Interest and feasibility of these modalities 
iii) Assessment of emotion detection 

performance of individual modalities and 
their fusion. 
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Briefly, we have made significant progress in 

goals 1 and 2, while the 3rd goal must be revisited in a 
future project.  

 
Common database building: A considerable 

database containing video, fNIRS and EEG signals has 
been built. We have already mentioned in Section 6 
about the incompatibility of video and EEG. As a 
consequence, two separate databases were built, one 
encompassing EEG (including physiological signals) 
and fNIRS modalities, and the other encompassing video 
and fNIRS modalities.  Second, there was an unpredicted 
interference effect between EEG and fNIRS setups. The 
elimination of the EEG & fNIRS interference is not 
insurmountable, though we did not have time to address 
the problem during the workshop. Third, the critical 
synchronization problem between the modality pairs has 
been ingeniously solved in two alternative ways. The 
fourth issue was the determination of the proper 
protocols as well as stimulation material. Although we 
used the standard methods and materials as in the 
literature, some subjects reported unsure or inadequate 
stimulation especially during the prolonged experiments. 
Subject discomfort and fatigue was another aggravating 
factor.  

 
Interest and feasibility of these modalities:  There 

is increasing interest in literature for emotion detection 
and estimation in humans. However, there exist separate 
literatures, one set of papers published in neuroimaging 
and neural signal processing journals, the other set of 
papers appearing in computer vision and man-machine 
interface journals. We believe the joint use of modalities 
was for the first time addressed in this workshop, as far 
as the open literature is concerned. Individual modalities 
do not fair very well in emotion assessment, hence we 
believe the multimodal approach will certainly improve 
the classification performance.  

 
Assessment of emotion detection performance of 
individual modalities and their fusion:. This part of the 
project has not been completed and  is left as a future 
work.  
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