
eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

Abstract - Due to increased user/service requirements in terms

of network quality of service (QoS) parameters, and
heterogeneity of end-user access network options and terminal
capabilities, introducing “network-awareness” into rich
multimedia and multimodal networked applications could
provide a critical advantage. An idea behind network-awareness
is to let the applications indicate their requirements and to adapt
to changing conditions in the network, as well as to let the
network “know” of the applications’ resource demands. This
approach is based on signaling, as a means to request special
treatment for traffic in the network and to receive indications
from the network of different conditions. Another important
issue for the proposed solution is the simplicity of use. Providing
developers with a reusable solution that, to much extent, removes
the need for understanding a specific signaling protocol eases and
quickens development of the network-aware applications. The
project objective was to identify generic signaling functionality,
and to create an application programming interface (API) which
will enable application developers to create advanced multimodal
networked services. The developed API was applied in a case
study using a prototype application.

Index Terms - Application Programming Interface, Dynamic
service adaptation, End-to-end Quality of Service signaling,
Multimedia and multimodal networked applications, IP
Multimedia Subsystem

I. INTRODUCTION
With ever more widespread multimedia and multimodal

end-user equipment, ranging from devices specifically
designed for a particular purpose to generic laptops and
mobile phones, a wide range of new services may be
envisioned to provide better quality of life, especially for the
elderly and the disabled. Examples of such services include
universally (“anywhere-anytime”) accessible and context-
adaptive information services, medical monitoring and
counseling services, and edutainment services based on
collaborative virtual environments (CVE) [1]. A CVE may
include various means of communication between its
participants, including, but not limited to face and body
gestures and behavior (performed via users’ representation in

the virtual world, or, avatar), text chat, and, possibly, live
voice communication. Further on, adaptation of the content
presented to the user may be required in more than one way,
taking into account the user's preferences, experience, and
(dis)ability, as well as user's terminal capabilities/features, and
network conditions. The interdependence of these
requirements may be addressed through the
"application aspect" and the "communication aspect" [12].

From the network point of view, such applications
involving rich multimedia content and real-time interaction
impose more strict requirements onto managing, delivering,
and monitoring network performance. For example, a too long
delay in service response or inability to adapt the content to
terminal characteristics may render the service useless. In this
work, we are particularly interested in services with multi-
modal information being exchanged not only at the advanced
human-computer interface, but also being transferred through
the network. Such services need to go beyond the traditional
approach (Fig. 1), where the quality guaranteed by the
network is either predefined (e.g. voice quality in fixed
telephony), or taken as random (e.g. delay in Web browsing),
to a more “network-aware” approach. This means that a
certain “control” component is needed at both the client and
the service “ends”, which is capable of exchanging control
information, or signaling, as illustrated in Fig. 2 below.

Figure 1. Traditional approach - network assumes predefined behavior

Figure 2. “Network-aware” approach - context and network adaptation

Introducing Network-Awareness for Networked
Multimedia and Multi-modal Applications

Miran Mosmondor*, Ognjen Dobrijevic+, Ivan Piskovic+, Mirko Suznjevic+, Maja Matijasevic+, Sasa
Desic*

*Ericsson Nikola Tesla, Research and Development Center, Zagreb, Croatia
{miran.mosmondor, sasa.desic}@ericsson.com

+University of Zagreb, Faculty of Electrical Engineering and Computing, Zagreb, Croatia

{ognjen.dobrijevic, ivan.piskovic, mirko.suznjevic, maja.matijasevic}@fer.hr

Network

Control
Client

application

Client
platform

Service
application

Service
platform

Client
application

Client
platform

Service
application

Service
platform

Network

Control Control Control

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

Legend
Signaling:
Data:

Client

Access and
Control

User interface Terminal/access
network capabilities

 QoS negotiation and
control

VE/non-VE
display

Application
Server

 QoS negotiation and control

Profile
Manager
(matching
process)

QoS
Optimization

Process

QoS authorization/monitoring

VR service
profile

repository

client profile
repository

VR service
processor

Event manager

VR service
repository VR service

transcoder

Active
Sessions

Data

QoS negotiation
and control

Figure 3. Model for dynamic negotiation and adaptation of QoS

A. Dynamic service adaptation model
A dynamic service adaptation model (DSAM) has been

proposed in our earlier work (more details in [10]), which
takes into account the heterogeneity of access options and
advanced multimedia services in next generation networks,
and attempts to further describe and specify the (sets of)
parameters referring to:

• end-user access network options and terminal
capabilities (client platform)

• user preferences (client application, human-
computer interface, personal preferences and/or
(dis)ability)

• available resources and costs (network)
• service requirements (server application, server

platform)
The proposed model focuses on the provisioning of end-to-

end support for signaling QoS requirements at the session
layer with the emphasis on virtual reality (VR) services. It
includes the entire process of negotiation and renegotiation of
QoS parameters, and service adaptation, from when an end-
user accesses a VR service until (s)he terminates it. The model
(shown in Fig. 3) is centered on a process in a client server
architecture in which a client accesses an application server
that hosts the service, and consists of a set of functionalities
that are logically combined into three entities: Client, Access
and Control, and Application Server.

After a user has initiated request for a specific VR service,
the Client passes it to the Access and Control entity,
specifying terminal capabilities and user preferences in a

“client profile”. A client profile incorporates user preferences
such as acceptable service format(s) and maximum download
time, terminal hardware and software, and access network
characteristics. The Access and Control entity represents a
group of service control and management functionalities, and
is responsible for identifying the client, authorizing requested
network resources, and negotiation of QoS parameters for the
service.

The QoS negotiation and control (QNC) receives the client
request and invokes the Profile Manager (PM). The PM
retrieves “service profiles” describing various service
configurations for the requested service and matches
parameters of the service profiles with constraints of the client
profile in order to determine achievable service
configurations. A service configuration is assumed achievable
when: (1) a user’s terminal capabilities are able to support the
requested service processing requirements; (2) the user’s
access network is able to support the minimum network
requirements for all required media elements; and (3) the
user’s preferences in terms of desired media elements and
acceptable download time can be met.

After the matching process, the PM extracts a set of
potential session parameters (i.e. media formats and codec
types) from service configurations that are feasible and
forwards it to the QNC. The QNC sends offered session
parameters to the Client, which in return indicates the subset
of offered parameters it agrees to. Network entities authorize
resources based on the agreed subset of parameters.

The returned parameter subset is sent back to the PM,
which then orders the achievable service configurations
according to quality based on user perceived quality. Quality
of the achievable service configurations is influenced by user
preferences (i.e. a user considers video to be of more
importance than audio), and different configuration can be
used if service degradation or upgrading is required. The
service profile with the highest quality configuration is sent to
the QoS Optimization Process (QOP).

The QOP determines the optimal service operating point
and resource allocation taking into account constraints related
to service requirements, terminal capabilities and user
preferences, and network resource availability and cost. By
the service operating point we assume the final configuration
of the VR service (included media elements, associated media
formats and codec types, etc.) that is to be delivered to the
user.

After determination of the service operating point and
resource allocation, the QOP sends the final service
configuration profile to the QNC of the Application Server.
The Application Server passes the final service profile to the
Client. In addition, reservation of network resources is
invoked.

The Application Server is responsible for retrieval and
adaptation of hosted VR service based on the calculation
carried out by the Access and Control. The QNC of the
Application Server receives the final profile and sends it to the
VR service processor. If necessary, service content is adapted,
after which the VR service processor delivers it to the user. A
generic sequence diagram of session establishment is shown
in Fig. 4.

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

A user’s interest in particular virtual environment objects
changes dynamically. Depending on provided interactions, a
user may, for instance, choose to start video streaming. If an
important change in user’s interest occurs, a need to determine
the new service operating point and reallocate network
resources may arise in order to meet new service
requirements. A user interaction, or a change perceived by the
service itself cause an event to be sent from the service to the
Event Manager (EM). Using received events, the EM informs
the QOP of new service conditions.

Negotiation/adaptation and optimization procedures are
invoked throughout the service lifetime in response to
significant network conditions and changes occurring in
service requirements and constraints like network resource
availability, network resource cost, and the client profile. Each
of the parties involved - the client side, the server side, and the
network - respond to dynamic changes in the system.

Three scenarios are specifically addressed:
 Changes in service requirements refer to addition or

detraction of application components (for instance,
starting or stopping video and audio streaming)
which result in signaling, among rest, reservation or

release of network resources.
 Changes in client profile refer to variations in any

client profile parameter (user terminal hardware or
software characteristics, access network
characteristics, user preferences) and are simulated
by sending new client profile versions from the
client side.

 Changes in resource availability refer to variations of
authorized network resources and result in signaling
new conditions to the end-points.

B. Dynamic service adaptation model implementation
While the proposed model is independent of the particular

network scenario, its applicability is of particular interest in
the 3GPP’s (3rd Generation Partnership Project) IP Multimedia
Subsystem (IMS) [7], a key path to providing the converged
next generation network architecture. An implementation of
the model was developed by mapping the DSAM model
entities to different nodes of the IMS architecture (more
details in [11]). For each of the conditions (session
establishment, change in client profile, change in service
requirements, and change in resource availability) covered by

User interface/display

Client_QNC

QoS auth./monit.

Acces and Control QNC

PM

Client profile repos.

Service profile repos.

QOP VR service proc. VR service trans.

VR service repos.

Client Application ServerAccess and Control

service preferences

service request

service request; client profile (reference)

find client profile

client profile

find service profile(s)

matching to determine feasible service versions()

offered session parameters()
offered session parameters()

choose parameter subset()

parameter subset()

parameter subset()

authorize QoS()

parameter subset, QoS authorization()

parameter subset, QoS authorization()

determine feasible service versions and degrad. path()

highest quality service version; client profile; QoS author.; feasible session param.; client param. subset()

optimization process()

final service profile (final oper. pt. and required resources)()final service offer()final service offer()

ok()

final service profile()

retrieve service content()

adapt service content()

adapted content()adapted service()

offered session parameters()

service profile(s)

Appl. Server QNC

initiate resource reservation

initiate resource reservation

final service profile

ok

final service profile

Figure 4. Generic sequence diagram for initial session establishment

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

the model a specific signaling scenario, that includes exchange
of signaling messages between involved parties, has been
defined according to the 3GPP specifications [4], [8], [9].
End-to-end signaling is preformed using widely adopted
IETF’s Session Initiation Protocol (SIP) [2] that, in our case,
is used to exchange XML-based client and service profiles.
Implementation of this signaling functionality will be used as
the basis for API development.

II. DYNAMIC SERVICE ADAPTATION API
The goal of this project was to identify generic signaling

functionality for application network-awareness and “fold” it
into an API to be used by various multimedia and multimodal
applications. The API, named Dynamic Service Adaptation
(DSA) API, was designed with client/server architecture in
mind meaning that one part of the API is to be used on the
client side (DSA Client API related to client application with
client platform) and the other part is to be used on the side of
an application hosting the service(s) (DSA Server API related
to server application with server platform), as shown in Fig. 5.

By using developed API, the application developers should
be shielded from the signaling protocol specifics. The
functionality of the API covers signaling service requirements
(in our case service profile), client characteristics (in our case
client profile) and final service configuration during session
establishment (service invocation) and session update (service
run-time phases) by exchanging messages, and capability of
receiving notifications of various events that are related to
changing conditions. Session update capability is initiated in
response to changes occurring in service requirements,
network resource availability and/or costs, and client
capabilities - scenarios already referred to as change in service
requirements, change in client profile, and change in resource
availability. The effects of signaling may include network-
aware service adaptation in response to varying conditions, as
well as adequate network response to client and service
requirements, with the overall goal of providing a better
service to the user.

Fig. 6 portrays the building blocks of DSA API described
hereafter.

1) DSA Client API

For the client part of DSA API several high-level

functionalities were abstracted. Most importantly, the client
part should handle all the signaling with involved parties in
terms of exchanging signaling messages. This includes
sending client profiles and session descriptions, as well as
receiving notifications of events occurring in the network or at
the server side. Furthermore, API implementation should ease
client profile manipulation. With these requirements in mind,
following modules were identified (Fig. 7):

 Signaling agent
 Signaling event listener
 Client profile handler

Signaling agent entity is the most important part of the

Client API, responsible for handling all signaling messages.
Several methods were identified as mandatory for this
signaling capability. First one is establishSession() which
initiates the signaling exchange with other network entities
involved. As an input argument it should receive client profile
description in a XML format that includes definition of client
preferences and capabilities. Analogue to this method, the
session can be terminated at any time by calling the
terminateSession() method. The changeInClientProfile()
method models a scenario when a change in client profile

Figure 5. DSA API embedded in DSAM model architecture

Figure 6. DSA API architecture

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

occurs, for instance due to change of access network or user
preferences. Another method, the
changeInServiceRequirements(), covers a scenario when the
client side initiates change in service requirements related to
signaling release of network resources reserved for (a)
particular service component(s). If a user is required to
register to use the network services, registration process is
invoked by calling the register() method.

Signaling event listener entity is responsible for receiving
events related to signaling progress. This includes basic
notifications on state of session establishment (session
successfully established and session establishment failed),
session update (session successfully updated and session
update failed), change in service requirements/signaling
release of network resources (service requirements changed),
and session termination (session successfully terminated),
regardless of which entity initiated the signaling. Additionally,
the client side can be notified of the registration process
(client successfully registered and client registration failed).

Client profile manipulation module is responsible for the
client profile creation and modification.

2) DSA Server API

DSA Server API was intended to provide applications with

the means to specify service requirements and changes thereof
in response to various user demands and network conditions.
As specifying service requirements is done in terms of the
service profile, this assumes the service parameters to be
specified in a standard format after which they are embodied
in the signaling messages and delivered to other entities.

Basic requirements of the DSA Server API included
signaling capability, based on the proposed signaling
functionality, and ability to receive and properly interpret

indications from the network. Signaling capability refers to
building blocks and methods that handle signaling specifics
based on the proposed message flow diagrams. Indications
from the network are based on the signaling progress in a
particular scenario, and are meant to signal various network
conditions of interest to application (changes in user
preferences, capabilities of user terminals, access network
conditions and network resource availability). Specification of
the DSA Server API is shown in Fig. 8.

Signaling manager entity is directly associated with the
signaling capability that is able to manage many clients
(users). Its functionality takes care of processing and/or
sending proper signaling message depending on developing
network conditions or service requirements. Besides defining
methods for starting and shutting down this entity, a method
for handling changing service requirements in terms of
signaling new service configurations has to be modeled. The
latter only handles the case where application initiates
signaling between involved parties, the rest is managed
automatically.

Signaling event listener entity is, analogously to the client
side, related to receiving events associated to signalization
progress and, through it, to varying network conditions.
Session successfully established and session establishment
failed are to receive events specific to setting up a session
between an application and a client. This process precedes
initial service retrieval. Session successfully terminated
manages events specific to session termination. Session
successfully updated and session update failed are to handle
events specific to session update. These events arise in
response to changing network conditions and/or service
requirements after session establishment. Any service
component needs network resources to be reserved in order to
be delivered to a user. As the signaling functionality assumes
signaling network (transport) QoS requirements to underlying
network entities in order to reserve necessary resources,
reserved network resources released event has been
introduced in order to indicate the release of those resources.

loadClientProfile()
changeClientProfile(parameter)

storeClientProfile()

parseClientProfile()
retrieveClientProfileParameter(parameter)

DSA Client API

Client profile
manipulation

Signaling agent Signaling event
listener

establishSession(clientProfile)

terminateSession()

changeInClientProfile(newClientProfile)

changeInServiceRequirements()

register()

sessionSuccessfullyEstablished(initialServiceConfiguration)

sessionEstablishmentFailed(failureCause)

serviceRequirementsChanged()

sessionSuccessfullyUpdated(newServiceConfiguration)

sessionUpdateFailed(failureCause)

sessionSuccessfullyTerminated()

clientRegistered()

clientRegistrationFailed(failureCause)

Figure 7. DSA Client API specification

loadServiceConfiguration()
changeServiceConfiguration(parameter)

storeServiceConfiguration()

parseServiceConfiguration()
retrieveServiceConfigurationParameter(parameter)

DSA Server API

Service
configuration
manipulation

Signaling
manager

Signaling event
listener

startSignalingManager()

changeInServiceRequirements(newServiceConfiguration,
userID)

shutDownSignalingManager()

sessionSuccessfullyEstablished(initialServiceConfiguration,
userID)

sessionEstablishmentFailed(failureCause, userID)

reservedNetworkResourcesReleased(userID)

sessionSuccessfullyUpdated(newServiceConfiguration,
userID)

sessionUpdateFailed(failureCause, userID)

sessionSuccessfullyTerminated(userID)

Figure 8. DSA Server API specification

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

Service configuration manipulation manages service
configuration processing in terms of retrieving (retrieve
service configuration parameter) or changing (change service
configuration) a particular configuration parameter.

III. DSA API IMPLEMENTATION
DSA API Reference Implementation (RI) is based on the

NIST-SIP API [3] and the 3GPP specifications [4], [8], [9]
providing SIP signaling mechanisms and specifics.

A. DSA Client API RI
Reference implementation of DSA Client API relies on two

Java packages:
• hr.fer.tel.nims.dsa.client, and
• hr.fer.tel.nims.dsa.client.clientprofilehandler.

First package (Fig. 9) contains SignalingAgent and
SignalingAgentException Java classes, and the
SignalingEventListener Java interface. SignalingAgent
corresponds to the Signaling agent and is initialized with the
reference to an implementation of the SignalingEventListener
Java interface and a path to the configuration properties file.
Methods implemented in the SignalingAgent are used for
establishing, updating, and terminating the session, as
described in the previous section. The
SignalingAgentException was introduced in order to notify the
client with a description of a problem related to the signaling.

The SignalingEventListener Java interface was modeled
according to the Signaling event listener entity. An
implementation of the handleSessionEstablishedEvent()
method is notified of successful session establishment with a
server hosting the service, and passed an initial service
configuration for the session. An implementation of the
handleSessionEstablishmentFailedEvent() method is notified
of a failure during session establishment and passed a
description of a failure cause. Event describing successful
session termination is delivered by calling an implementation
of the handleSessionTerminatedEvent() method. In response
to changing network conditions, session has to be updated.

The handleSessionUpdatedEvent() method notifies of
successful update of the session by delivering new service
configuration, while the handleSessionUpdateFailedEvent()
method delivers a description of a failure cause along. The
handleServiceRequirementsChangedEvent() method
implementation is notified of network resource release for (a)
particular service component(s). Methods related to
registration process are implemented according to the
behavior model described in the previous section.

Package hr.fer.tel.nims.dsa.client.clientprofilehandler
contains functionalities for handling the client profile
specifics. Main Java class for managing both client and
service profiles is the ProfileParser which implements
ProfileInterface Java interface. It comprises methods for
managing profiles: getParameter(), addParameters(),
editParameters(), and getParameterValue(). Parsing the
profiles is done using the Simple API for XML (SAX) parser
[6].

B. DSA Server API RI
Following API specification, reference implementation

relies on three Java packages:
• hr.fer.tel.nims.dsa.server,
• hr.fer.tel.nims.dsa.server.eventlistener, and
• hr.fer.tel.nims.dsa.profilemanipulation.

First package contains SignalingManager Java class (Fig.
10) that corresponds to the Signaling manager entity. Its
constructor is initialized with the configuration properties file
and the reference to an implementation of the
SignalingEventListener Java interface. The
startSignalingManager() method starts, while the
shutDownSignalingManager() method terminates the
components of the manager. As explained previously, the
changeInServiceRequirements() method initiates signaling
new service requirements in terms of new service
configurations.

The hr.fer.tel.nims.dsa.server.eventlistener defines
SignalingEventListener Java interface (Fig. 10) that was
modeled with the Signaling event listener entity. An
implementation of the handleSessionEstablishedEvent()
method is notified of successful session establishment with a
particular client and passed an initial service configuration for
the session. An implementation of the
handleSessionEstablishmentFailedEvent() method is notified
of a failure during session establishment with a particular
client and passed a description of a failure cause. Event
describing successful session termination with a particular
client is delivered by calling an implementation of the
handleSessionTerminatedEvent() method. In response to
changing any network condition, session has to be updated.
The handleSessionUpdatedEvent() method notifies of
successful update of the session with a particular client by

 Figure 9. Package hr.fer.tel.nims.dsa.client*

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

Figure 10. Package hr.fer.tel.nims.dsa.server*

delivering new service configuration, while the
handleSessionUpdateFailedEvent() method delivers a
description of a failure cause along. An implementation of the
handleNetworkResourcesReleasedEvent() method notifies of
network resource release for a particular client. Each client
must uniquely be identified with its IP address.

The profilemanipulation package (Fig. 10) consists of
several Java classes that handle the service configuration
format (service profile) explained in the first section. The
ProfileInterface Java interface defines basic
format/configuration manipulation methods, while the
ProfileParser Java class implements methods for parsing it
and modifying its values. The XmlElement Java class
symbolizes a tag in the XML (Extensible Markup Language)
structure with accompanying attributes.

IV. CASE STUDY
In order to show the applicability of the DSA API, a

prototype Web-based application has been designed and
developed. It hosts a 3D virtual world featuring a treasure
hunt-like game and was extended with the signaling
capability. Example client and service profiles that describe
different user preferences, terminal capabilities, access
network conditions, and service requirements were specified.
Using the prototype application functionality of the API was
tested in a laboratory testbed.

A. The prototype application
Our case study application, the Inheritance Chase, is a

multiplayer game based on the client/server network
architecture. The game scenario consists of a real-time
adventure similar to a treasure hunt and is taking place in a 3D
world developed using the Virtual Reality Modeling Language
(VRML). Its plot is as follows. Players’ rich distant relative
has deceased recently and left a vast inheritance. His last will
is hidden somewhere in the virtual world and each player has
to find it first in order to get the inheritance. To achieve that,
they have to follow different audio and/or video clues.

The virtual world (Fig. 11) consists of two scenes: an island
with two houses (Fig. 11a), which is a part of the world where

most of the game takes place, and the scene containing a large
chessboard (Fig. 11c), associated to one of the clues. After a
player enters the game, the main scene is retrieved from the
server side. Each player is represented with an avatar (virtual
3D character, Fig. 11b) which is visible to other players. As
players explore the world, they come across the clues. Clues
that lead players to finding the will were designed in different
forms - some of them are streaming audio/video clips, others
were implemented using special VRML elements bound to the
scenes themselves. There are particular scene objects that are
to be selected with the mouse in order to start “streaming”
clues playing. All this service content (virtual 3D scenes,
avatars, real-time streaming media, texture images) contribute
to complexity of the system which, we believe, may serve as
an example of an advanced multimedia and multimodal
application, and its complex QoS requirements at the transport
layer.

Implementation of the application hosting this service is
divided into three parts. The first part refers to the SIP
signaling functionality in the terms of specifying service
requirements using service profiles. This logic was developed
in a way to meet dynamic nature of the system and handle
exchange of signaling messages as defined by dynamic
negotiation and adaptation scenarios (chapter 1.A). The
second part is responsible for retrieving the 3D scenes,
starting/stopping and displaying audio/video clips,
synchronizing virtual world states among different players etc.

a. The island

b. Players’ avatars

Figure 11. The Inheritance Chase game

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

“Real-time media” hints are streamed and displayed using
Java Media Framework (JMF) API based players. The third
one is related to the service content and has been realized
using an Apache Tomcat Web server. Multiplayer engine of
the game is called DeepMatrix, and is written using Java
programming language.

The Inheritance Chase game has been developed in three
different service versions. Each of them regulates which
service components, and in what form, are going to be
delivered to a user, depending on the client side capabilities,
network conditions, and service requirements. These three
support:

(1) high quality audio and video streaming,
(2) low quality audio and video streaming, and
(3) low quality audio streaming only,

each with accompanying set of media codecs offered. Their
configurations are stored as service profiles on server that
hosts the service and organized according to predefined XML
structure. For each service version this implementation
provides only static transcoding, which means that service
content has to be prepared in advance.

The client side is represented with several different client

profiles based on various user terminal capabilities, access
network characteristics, and user preferences. Client profile
format is based on the SDPng [5].

B. Laboratory setup and test scenarios
As mentioned before, DSAM model was mapped to the

3GPP IMS architecture. This mapping was used as a reference
for DSA API implementation. The API embedded in DSAM
prototype implementation entities of a laboratory testbed is
shown in Fig. 12. The Session control element is responsible
for managing the signaling flows. It routes messages from the
Client to the End point Application Server through the QoS
Matching and Optimization Node. It is also responsible for
registration and authentication procedures. The QoS Matching
and Optimization Node is the central part of DSAM model,
responsible for matching process and optimization
calculations. The Policy enforcement element is used for
reservation of the negotiated network resources. It also detects
any change in network resource availability. The Network
control element is used for forwarding signaling messages
between the Client and the Session control element, and for
passing negotiated resource reservation parameters to the
Policy enforcement element. The Virtual channel emulates
various network conditions.

The prototype application integrated with developed DSA
API was tested with the following scenarios [10]:

 Session establishment,
 Change in service requirements,
 Change in client profile, and
 Change in network resource availability.

Session establishment is invoked by an end-user (a player).

It includes procedure of registering a user-terminal to the
network, negotiating initial service parameters (Fig. 13) in the
terms of final service profile, and service retrieval (scene
download, Fig. 14) in accordance with negotiated
configuration. This scenario also comprises signaling

Client

Network control
element

Session control
element

Virtual channel

Policy enforcement

End point
Application

Server

QoS Matching and
Optimization Node

SIP SIP

SIP

SIP

COPS

(QoS) (QoS)

DSA
Client
API

DSA
Server

API

Figure 12. DSA API embedded in laboratory testbed implementation entities

c. The chessboard

Figure 11. The Heritage Chase game

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

authorization, reservation, and release of network resources
used for scene download, as needed.

Change in service requirements is caused by a user
initiating an audio and/or video streaming. Signaling new
service requirements is invoked by the server side, and new
service configuration is negotiated based on information,
carried in signaling messages, that are related to streams being
requested. The QoS Matching and Optimization Node
calculates optimal audio and video codec combination based
on user preferences, user terminal constraints, network
capabilities (bandwidth, delay, loss, etc.), resource cost, and
service requirements. Prior to starting media streaming (Fig.
15), reservation of network resources is signalized. Through
the Policy enforcement entity the Network control element
reserves the calculated resources at the virtual channel.

The third scenario, change in client profile, is caused by an
increase or a decrease in the user’s access network bandwidth,
which results in new negotiation and optimization process.

This change is simulated by sending a new client profile
configuration from the client side. If, for instance, media
streaming is taking place at that instant, and if a variation of
the bandwidth increase is significant, automatic change of the
streaming quality/codecs (Fig. 16 and Fig. 17) will occur
according to the new service configuration.

Change in network resource availability is detected by the
Network control element (receives information from the
Virtual channel). This again invokes negotiation and
optimization process, which results in a new service
configuration. Automatic changes of service parameters (i.e.
audio codec due to a decrease of authorized network
resources, Fig. 18 and Fig. 19) at the client and the server side
occur in compliance with negotiated service profile.

During service run-time, changes in various
parameters/constraints, related to the client side, service
requirements, and the network resources can occur, and it was
shown that each time an adapted version of all the service
components will be delivered to a user.

Figure 13. Session parameters offered during initial session establishment

Figure 14. Service retrieval

Figure 15. “Streaming” audio and video clues

Figure 16. “Streaming” audio and video clues after codec change

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

V. CONCLUSION
The developed API offers various benefits to application

developers. It may ease development of advanced multimodal
and multimedia applications with network-aware adaptation

and shorten the application development time. The proposed
approach differs from current approaches, where applications
either (1) do not use signaling at all (e.g. most Internet
applications), or, (2) use a standard network and/or service
specific signaling protocol (e.g. H.323, SIP) but have the
signaling capability built into, and thus inseparable from, the
client application or client platform. While the second
approach enables the exchange of control information, it is
practically impossible to reuse this functionality due to tight
coupling with the application. Also, this approach assumes
that the application developer knows the signaling protocol
specifics very well, and is capable of building the signaling
agent into each and every new application from scratch.
Finally, once built into the application, signaling support can
not be upgraded to, for instance, a more recent release of the
signaling protocol without significant effort and rebuilding the
whole application. The proposed approach solves these
problems.

ACKNOWLEDGMENT
Ivan Piskovic was partially funded by SIMILAR, the

European Network of Excellence on Multimodal Interfaces.
This work was supported by research project Networked

Virtual Reality in IP Multimedia Subsystem (NIMS),
conducted in the cooperation between the Faculty of Electrical
Engineering and Computing, University of Zagreb, and the
Ericsson Nikola Tesla company from Zagreb.

REFERENCES
[1] S. Singhal and M. Zyda, Networked Virtual Environments: Design and

Implementation, Addison-Wesley, 1999.
[2] J. Rosenberg et al., “SIP: Session Initiation Protocol”, RFC 3261, June

2002.
[3] NIST-SIP [Online]. Available: http://snad.ncsl.nist.gov/proj/iptel/
[4] 3GPP TS 23.228: ”IP Multimedia Subsystem (IMS); Stage 2”, Release

7, June 2005.
[5] Kutscher, Ott, and Bormann, “Session Description and Capability

Negotiation”, draft-ietf-mmusic-sdpng-08.txt, TZI Universitaet Bremen,
February 20, 2005.

[6] SAX [Online]. Available: http://www.saxproject.org/sax1-roadmap.html
[7] G. Camarillo and G.-M. Miguel-Angel, The 3G IP Multimedia

Subsystem (IMS): Merging the Internet and the Cellular Worlds, John
Wiley & Sons, 2004.

[8] 3GPP TS 23.218: ”IP Multimedia (IM) session handling; IM call model;
Stage 2”, Release 7, June 2006.

[9] 3GPP TS 24.228: ”IP multimedia call control protocol based on Session
Initiation Protocol (SIP) and Session Description Protocol (SDP); Stage
3”, Release 7, December 2005.

[10] L. Skorin-Kapov and M. Matijasevic, “Dynamic QoS Negotiation and
Adaptation for Networked Virtual Reality Services” in Proc. of the Sixth
IEEE International Symposium on a World of Wireless and Mobile
Multimedia, Italy, 2005, pp. 344-351.

[11] L. Skorin-Kapov and M. Matijasevic, “End-to-end QoS Signaling for
Future Multimedia Services in the NGN”, Lecture Notes in Computer
Science (0302-9743), St. Petersburg, 2006.

[12] M. Matijasevic, D. Gracanin, K. P. Valavanis, and I. Lovrek, “A
framework for multi-user distributed virtual environments”, IEEE
Transactions on Systems, Man and Cybernetics, Part B: Cybernetics,
32(4):416–429, August 2002.

Figure 17. Applied codec change after increase in network bandwidth

Figure 18. “Streaming” audio clue

Figure 19. Applied codec change after authorized resources decrease

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

Miran Mosmondor received his Dipl. Ing. (2004) degree in electrical
engineering from the University of Zagreb, Croatia. Since 2004 he has been
employed as a research engineer in the Research and Development Center of
the Ericsson Nikola Tesla company in Croatia, working in the area of
networked virtual reality. Currently he is also working towards his Ph.D.
degree at the Faculty of Electrical Engineering and Computing, University of
Zagreb. As an undergraduate student with state scholarship he participated in
the Summer Camp 2003: “Agent and Visualization Technologies” workshop,
jointly organized by Ericsson Nikola Tesla in cooperation with the Faculty of
Electrical Engineering and Computing, University of Zagreb. Later, he
became one of the project leaders at Summer Camp 2005 "Exploring ICT
Frontiers: Agents, IP Multimedia Subsystem, and Distributed Computing". He
published several conference papers, some of which were awarded (IEEE 12th
MELECON 2004; Best Student Paper Award). His main research interests are
in the field of multimedia communications, virtual environments and mobile
applications development.

Maja Matijasevic received her Dipl.-Ing. (1990), M. Sc. (1994), and Ph. D.
(1998) degrees in Electrical Engineering from the University of Zagreb,
Croatia, and the M. Sc. in Computer Engineering (1997) from the University
of Louisiana at Lafayette, LA, USA. She is presently an Associate Professor
in the Faculty of Electrical Engineering and Computing, University of Zagreb,
Croatia. Her main research interests include networked virtual environments
and advanced multimedia for next generation networks. She authored more
than 40 publications, and served as a guest editor for several journal special
issues. She has been involved in organization of several international
conferences. Dr. Matijasevic is a senior member of IEEE, and member of
ACM and Upsilon Pi Epsilon Honor Society in the Computing Sciences.

Sasa Desic received his Dipl. Ing., M.Sc. and Ph.D. degrees from the Faculty
of Electrical Engineering and Computing, University of Zagreb, Croatia, in
the years 1997, 1999 and 2004 respectively. From 1997 to 2000 he worked as
a research assistant at Faculty of Electrical Engineering and Computing. He
has been with Ericsson Nikola Tesla since 2000, currently employed as head
of the Research Department. Previously he was the project leader of a joint
research project conducted in cooperation with the Faculty of Electrical
Engineering and Computing called “Remote operations management”
investigating systems for software management on the remote locations. He
actively participates in several research projects conducted in cooperation with
the academia including project Location Based Services investigating the
integration of different sources of location information. Since 2004, he is also
an adjunct assistant professor at the University of Zagreb, Faculty of Electrical
Engineering and Computing.

Ognjen Dobrijevic received his Dipl. Ing. degree in Electrical Engineering
from the University of Zagreb in June 2004. In 2002 and 2003 he participated
in the workshop, organized in the collaboration between the Research
Department of the Ericsson Nikola Tesla company in Zagreb and the
University of Zagreb, Faculty of Electrical Engineering and Computing,
where he was engaged in projects Mobility in Advanced Network
Architectures and Visualization Technologies. He has been a research
assistant at the Faculty of Electrical Engineering and Computing in Zagreb
since September 2004, where he is working towards his Ph.D. His main
research interests include next generation networks, related QoS signaling
issues, and adaptive multimedia applications. He is a member of the IEEE
association.

Ivan Piskovic was born 1983 in Zagreb, Croatia. He finished high school in
Zagreb in 2001 and is now an undergraduate student of the Faculty of
Electrical Engineering and Computing, University of Zagreb. His interests
include architecture of next generation networks and related multimedia
session-control issues.

Mirko Suznjevic was born 1983 in Karlovac, Croatia. He finished high
school in Glina in 2001 and is now an undergraduate student of the Faculty of
Electrical Engineering and Computing, University of Zagreb. In 2005 he
participated in Ericsson’s workshop, Summer Camp 2005 "Exploring ICT
Frontiers: Agents, IP Multimedia Subsystem, and Distributed Computing",
where he worked on development of a networked virtual environment
application with multi-user support. His interests include networked virtual
environments and network design.

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

APPENDIX: SOFTWARE DEMONSTRATION NOTES
In order to run demonstration example, installation and

configuration of three software components has to be done.
Instructions for running each of the provided components
under Windows operating system will be described hereafter.

A. Instructions for installing the Inheritance Chase game
and the End point Application Server
First step is to:

1) Copy the matrix_server folder (further on referred to
as ‘+’) to a machine that will run the game server
application.

After copying the folder:
2) Create C:\Documents and Settings\User\Desktop

destination folder, if one already does not exist, and
copy sdpcontent.txt and sdpParameters.txt files from
the +\sdpmediadescription folder to the destination
folder.

3) Edit the configuration.properties file, in the
matrix_server folder, to respond to IP address of the
computer and wanted port number.

In order to run the game server, the computer furthermore

needs to have the following software installed:
- Apache Tomcat Web server (version 5.5 preferred),

and
- Java Media Framework (JMF) API (version 2.1.1e

preferred). When the JMF is installed, the jmf.jar file
from the <JMF_folder>\lib folder needs to be copied
to the +\lib folder.

After installation of the Web server:

1) Modify the gallery<1,2,3>.xml files in the +\
serviceprofilerepository\gallery\profiles folder so that
IP address in the url parameters responds to IP address
of the computer used as the game server.

2) Complete folder named DeepMatrix needs to be
copied into the <Tomcat_folder>\Apache Software
Foundation\Tomcat 5.5\webapps\ROOT folder
(further on marked as ‘*’).

3) Class file EventManager from the
+\bin\nvrcontentserver\vrserviceprocessor folder
needs to be copied into the *\WEB-
INF\classes\nvrcontentserver\vrserviceprocessor
folder.

4) Class file GalleryServlet from the
+\bin\nvrcontentserver\vrserviceprocessor\...
...galleryservice folder needs to be copied into the
*\WEB-
INF\classes\nvrcontentserver\vrserviceprocessor\...
...galleryservice folder.

5) File web.xml in the <Tomcat_folder>\Apache Software
Foundation\Tomcat 5.5\conf folder needs to be
modified so that the comments “around” servlet
org.apache.catalina.servlets.InvokerServlet and

“around” servlet mapping for the invoker servlet (tag
servlet-name equals to invoker) are deleted.

6) Files Matrix.html and Matrix1.html in the
*\DeepMatrix folder have to be modified so the IP
addresses correspond to the machine that hosts the
game server.

7) File matrix.wrl in the *\DeepMatrix\world folder has
to be modified in scripts calling and calling2 so the IP
address/computer name corresponds to the machine
that hosts the game server. If an IP address is used,
input format must be complied. Furthermore, modify
IP address in the first two url parameters of the
Anchor node in the Object3 Transform node to match
the computer being used as the game server.

B. Instructions for installing the QoS Matching and
Optimization Node
For the purposes of matching client and service profiles,

and optimizing final service configuration that is delivered to
a user, the QoS Matching and Optimization Node (QMON)
needs to be installed. First step is to:

1) Copy the SIP-AS folder (further on referred to as ‘#’)
to a machine that will run the component. It is
recommended to use a different machine than one
hosting the game server application, but it is not
necessary.

After copying the folder:
2) Edit the configuration.properties file, in the SIP-AS

folder, so the javax.sip.IP_ADDRESS and the
hr.fer.teletk.NETWORK_PRICE_QUOTATION_AD-
DRESS parameters respond to IP address of the
computer, and hr.fer.teletk.SIP_STACK_PORT to a
wanted port number. Furthermore, the
javax.sip.OUTBOUND_PROXY parameter must
respond to IP address and port number of the Server’s
configuration.

3) Modify all txt files in the #\SimulatedResponses
folder, so that the ReceivingClientIP tag responds to
IP address of a computer running the client and IP
address in the url parameter(s) matches IP address of
the computer hosting the game server.

4) Add the absolute path of the #\lib folder to the Path
system variable.

C. Instructions for installing the Client
First step is to:

1) Copy the matrix_client folder (further on referred to as
‘$’) to a machine that will run the game client
application. It is recommended to use a different
machine than one hosting the QMON, but it is not
necessary.

After copying the folder:
2) Edit the configuration.properties file, in the

matrix_client folder, to respond to IP address of the

eNTERFACE’06, July 17th - August 11th, Dubrovnik, Croatia - Final Project Report

computer and wanted port number. Furthermore, the
NEXT_HOP parameter must respond to IP address and
the hr.fer.teletk.SIP_STACK_PORT port number of
the QMON.

3) Modify the four files, in the matrix_client folder, that
contain word gallery in their names so that IP address
in the Host parameter corresponds to IP address of the
computer hosting the game server.

In order to run the client application, the computer needs to

have the following additional software installed:
- Microsoft Java Virtual Machine (MS JVM, version

5.00.3810 preferred),
- a Web browser (Internet Explorer preferred),
- VRML player/viewer for the particular Web browser,

i.e. if Internet Explorer is used, Cortona VRML Client
is preferred, and

- JMF API (version 2.1.1e preferred). When the JMF is
installed, the jmf.jar file from the <JMF_folder>\lib
folder needs to be copied to the matrix_client\lib
folder.

When installing the JMF, mark all the checkboxes setup
offers. In the Tools->Internet Options…->Advanced section
of the Internet Explorer, usage of the compiler for Microsoft
Virtual Machine has to be enabled.

D. Simple demonstration scenario
When software components have been properly configured,

each of them can be started using accompanying batch file.
Following simple demonstration scenario, a particular
functionality of DSAM prototype implementation can be
portrayed. Each client must uniquely be identified with its IP
address. Before starting demonstration, it should be checked
whether the Web server has been started.

Assumed demonstration scenario will reflect functionality
of the software components related to first three scenarios of
the case study - session establishment, change in service
requirements, and change in client profile.

Session establishment is invoked by a user sending a
particular client profile - in this case, for instance, the Matrix
audio and video LQ. This particular client profile depicts
conditions in UMTS access network with somewhat lower
bandwidth and user’s interest in both audio and video
component of the service. Before sending the profile, the user
has to specify IP address and port number of the game server.
Next step in initial session establishment is offering session
parameters to the user. For now, it is only allowed to accept
offered parameters. After negotiating initial service
parameters in the terms of final service profile, session
establishment procedure successfully finishes and main 3D
scene of the game is retrieved. It is displayed in the window of
a Web browser when the user has logged in (use login mm).

Now change viewpoints to the scene until one containing a
phone box is reached. Selecting it with the mouse starts
“streaming” clues playing (adding audio/video streaming to
the game refers to change in service requirements). Prior to
streaming, signaling these new service requirements is

invoked by the server and new service configuration is
negotiated based on the information related to media streams
being requested.

While the streaming takes place, the user could, for
instance, send the Matrix audio and video HQ profile. This
client profile depicts the same user’s preferences (interest in
both audio and video) but somewhat altered conditions in the
access network related to a higher bandwidth. Sending new
client profile results in new negotiation and optimization
process. In this case, when the process finishes the streaming
quality improves (audio and video codecs change, according
to the new service configuration, which can be seen in the
console of the VRML viewer).

Completion of the streaming also results in signaling
changed service requirements, but this time associated to
detraction of service components.

