

The SIMILAR NOF

Gestural control of audio systems and digital musical instruments

Jean-Michel Couturier

eNTERFACE'05: The SIMILAR NoE Summer Workshop on Multimodal Interfaces July 18 - August 12, 2005 - Faculté Polytechnique de Mons - Belgium Phone: (+32) 65 37 47 74 - Fax: (+32) 65 37 47 29

Interactive audio systems and HCI

- highly specialized branch of HCI
- Some characteristics (Hunt & Kirk):
 - no fixed ordering to the human-computer dialogue
 - no single permitted set of options but rather a series of continuous controls
 - instant response to user's movements
 - Further practice develops increased control intimacy and thus competence of operation

Interactive audio systems and Digital Musical Instruments

- Different types of interactive audio systems
 - Interactive sound installations
 - Musical instruments
 - Dance/music interfaces
 - (Computer games)
- Digital musical instruments

Same functions as acoustical instruments:

- Real time control of sound
- Dedicated to play music: importance of aesthetics

Problem in digital instrument design

Acoustic instruments:

Causal link between the gestures and the resulted sound

Digital instruments:

The natural gesture-sound link disappears

Outline

- 1. Historical overview
- 2. Digital musical instruments
- 3. Examples from CNRS/LMA

From sound synthesis beginnings to nowadays: some examples

The Theremin (1920)

Computer synthesis

Max Mathews 1957

Music V: modularity

```
COM------;
INS 0 1;
P9_HZ(W9) P6_HZ(W6) P7_HZ(W7) P8_HZ(W8)
P5_W5/4;
IOS P5 P8 B3 F1 P30;
IOS P7 P8 B4 F1 P29;
AD2 B4 P6 B4;
IOS B3 B4 B3 F1 P28;
IOS B3 P8 B4 F4 P26;COM DTE GCHE;
SB2 B3 B4 B3;
STR B3 B4 B1;END;
COM------;
```


Analog Synths: Moog (1964)

 Theme from A Clockwork Orange (Beethoviana), Wendy Carlos 1972

Digital Synthesis, FM (John Chowning 1967, DX7 1983)

The MIDI protocol (1983)

- Standard to exchange data between machines
- digital data
- Adapted to Keyboards-like interface
- Still used today, despite of its inconveniences

Don Buchla - MIDI controllers

- Thunder (1990)
- Lightning (1991)

« The hands » , Michel Waiswisz

Mouthesizer, M. Lyons

bioelectric sensors Atau Tanaka

Tangible interfaces

Audio Pad

Digital musical instruments

musician - instrument relationships

action - perception loop

Digital musical instruments

• Mapping : link between gesture and sound

Hardware / Software

- Controllers: hardware (sensors)
- Data management / Sound production:
 - Programmers:Max/MSP, Pure Data
 - Low end users:
 standalones, plug-ins,
 virtual instruments

Sound processes

Synthesis methods

- Wave table synthesis
- Additive synthesis
- Subtractive synthesis
- FM and non-linear distortion
- Granular synthesis
- Physical models

Synthesis parameters Synthesis Created sound

Digital audio effects

Act on : dynamic, time, pitch, space, timbre (envelope, phase, spectrum)

Gesture in digital musical instruments

Instrumental gesture

 Gesture is « all corporal behaviours associated to our muscular activity » [Cadoz, 1999].

Instrumental gestures:
 gestures that are involved into
 creation or modulation
 of the produced sound

Gestures of musicians

- action perception loop :
 Learning and perfection
- Current tools : action -> result
- Instrument : action <=> result
 - strong synchronicity of gestures
 - Learning time

Gesture typology

- Excitation gestures: give the energy that is need to produce sound
- Modification gestures: modify a sound during its lifetime
- Selection gestures

Others: preparatory gestures

Controllers' typology

- Direct acquisition
 - Haptic
 - Invasive
 - non invasive
 - non haptic
- Indirect acquisition
- Hybrid systems

Type of gestural controllers

Imitation of acoustical instruments

Alternative controllers

Compare controllers

taxonomy

s: USB mouse

c: QWERTY kbd

j : joystick (Saitek Cyborg 3D Gold)

g : graphical tablet (Wacom Intuos 2)

p : Pointing Fingers(1 finger)

Feedbacks

Feedbacks

Feedbacks

Auditory feedback

Visual feedback

Beginner: look at his gestures

Other musicians

Scores

Audience

Secondary feedback:

Video

Graphical interfaces

Haptic feedback

« A gesture is characterized by the indissociable interweaving of its motor function and its perceptive function » [Gibet 1988]

Tactile

Mapping: link between gesture and sound

Modularity in the Mapping

Mapping Attributes (1/3)

- Explicit
 - Mathematical functions
- Implicit (black box)
 - Statistical tests
 - Neural networks
 - Maximum estimation in a data basis

Mapping Attributes (2/3)

Simple

- "One to one"

Complex

- "Many to many"
- output = combination between several inputs

Mapping Attributes (3/3)

Static

$$-s(t) = F(e(t))$$

Dynamic

$$- s(t) = F(e(t), e(t-1), ...)$$

- Mechanical systems
- Genetic algorithms

Managing data

About control data

- Temporal data : x(t)
- Sampling rate
 - Audio: 44100 Hz (CD standard)
 - Control: between 50 and 1000 Hz, best: > 100 Hz (10 ms)
- Latency time
 - Interval between an action and the response of the system to this action
 - Best: > 10 ms for musical control

Data types

Discontinuous

- Trigger
- x = 0 or 1
- Example: triggering of temporal envelopes
 ADSR (Attack, Decay, Sustain, Release)

Data types

Discontinuous

- Trigger
- x = 0 or 1
- Example: triggering of temporal envelopes

Continuous

- Limits : variation scales
- Resolution (example : MIDI data -> 7 bits = 128 values)
- Lists and matrixes

x min x max

45

Simple data transformations

- Changing scales
- Use tables
- Division into several areas
- Time transformations:
 - Delays
 - Smoothing

Presets

- Storing parameters values
 - All parameters cannot be controlled simultaneously
 - Fix some parameters to constant values
- Choice of presets:
 - Selection gesture
 - Modulation gesture: interpolation

Interpolation between parameters

Continuous transition between presets

- 1D interpolation
 - Go to one preset to another using a continuous parameter
 - S(x) = A.x + B.(1-x) with x [0; 1]
- 2D interpolation

Principle of 2D interpolation

Digital musical instruments: some examples developed at CNRS/LMA

The Voicer

Interpolation between vowels

Circular control of pitch

The Voicer

Scanned synthesis

Scanned synthesis

Curves manipulated by metaparameters

Control parameters:

String parameters

String shape: wavetable

Scanning frequency

scanning

Sound

Scanned Synthesis: graphical interface

Scan gloves

Scanned Synthesis controlled with gloves

Filtering String

Sound input: noise, samples, ...

Forces on the string

Physical parameters of the string 57

Photosonic Emulator

Emulator created by Daniel Arfib from the Photosonic Synthesiser of Jacques Dudon

Photosonic Emulator

Graphical interfaces in the control of sound processes

Graphical interfaces

- Implemented in most computers
- Current interfaces: not suitable for sound process control
 - Only one hand involved
 - Actions performed one after the other
- Post-WIMP interaction

Graphical interfaces: examples

- Graphical objects
- Dynamic virtual objects
- Mixed reality
- 3D interfaces

Design graphical interfaces: different strategies

- 1. Generic interaction techniques: independent from sound processes
- 2. Start from specificities of the sound process to design the graphical interface

Etheraction

Wave terrain synthesis

A trajectory runs on a 3D terrain

different types of trajectories

Graphical interface

Conclusion

- Digital musical instrument
 - Specific interactive system
 - Recreate the link between gesture and sound
 - Importance of the mapping
- Tomorrow instruments?
 - Use of visual and haptic feedbacks
 - Up to you to create them …

Thanks for your attention

jmc@jmcouturier.com

http://www.jmcouturier.com