

The SIMILAR NoF

Human-Computer Interaction (HCI) Interaction modality and **Multimodality**

Laurence Nigay

University of Grenoble CLIPS-IMAG Laboratory

User Interface Engineering Team

eNTERFACE'05: The SIMILAR NoE Summer Workshop on Multimodal Interfaces July 18 - August 12, 2005 - Faculté Polytechnique de Mons - Belgium Phone: (+32) 65 37 47 74 - Fax: (+32) 65 37 47 29

Introduction: the Domain

Human-Computer Interaction

Introduction: the Domain

- Human-Computer Interaction
 - Design of usable multimodal interaction

A modality

A multimodal system

Software architecture model for multimodal systems
 Fusion of different objects

from various modelling

techniques:

How?

At which level of abstraction?

Introduction: the Domain

Multimodal Interfaces extend the sensori-motor capabilities of computer systems

Multimedia ≠ Multimodal

New interaction capabilities will probably appear

Research approach and the V software lifecycle

on Multimodal Interfaces

Outline

- Terminology
 - Design space
 - Interaction modality
 - Multimodality: combination of modalities
- Fusion/Fission mechanisms
- ICARE platform for input/output multimodal interaction
- Grand Challenges

Multimodality: Design space

Set of atomic/combined modalities

Context

Modality

Combination of modalities

Information to be conveyed

Selection of one or several modalities

Multimodal Expression

Actor of the selection

Selection criteria

Laurence Nigay

eNTERFACE

The SIMILAR NoE
Summer Workshop
on Multimodal Interfaces

Multimodality Actor of the selection

Who is performing the selection

User

System

Selection of one or several modalities

> Actor of the selection

Multimodality Actor of the selection

No adaptation

Adaptability

Adaptivity

Laurence Nigay

Multimodality Adaptability

Go to the middle of the message

> The SIMILAR NoE Summer Workshop on Multimodal Interfaces

Multimodality Adaptability

Wizard of oz

Accomplice

Subject

Multimodality Adaptability

- Usage of the modalities
- All sessions / All subjects

- Speech
- Direct manipulation
- Gesture
- Embodied

Multimodality Adaptability

- The subjects used all of the modalities
- Individual preferences leading in some cases to specialization
- Few redundancy and complementarity cases

Multimodality Adaptativity

- Selection of the modalities by the system
- Context-aware systems

Ring

Vibration

Multimodality: Design space

Multimodality Selection criteria: Context

Summer Workshop

Multimodality: Design space

Context

Modality

Combination of modalities

Information to be conveyed

Selection of one or several modalities

Multimodal Expression

Selection criteria

Laurence Nigay

The SIMILAR NoE
Summer Workshop
on Multimodal Interfaces

Definition of a modality

- Modality = (device, interaction language)
 - A set of sensors (input devices) or effectors (output devices)

Perception/Action

A processing facility based on a language

Output modality

Multimodality

Characterisation of a modality

Theory ICS - APU Cambridge

 ICS as predicting cognitive resources involved in using and choosing modalities

- Modality = (device, interaction language)
- Recent interaction paradigms such as perceptual User UI tangible UI and embodied UI open a vast world of possibilities
 - M1 = (microphone, natural language)
 - M2 = (keyboard, command language)
 - M3 = (mouse, direct manipulation)
 - M4 = (PDA, 3D gesture) embodied UI
 - M5 = (HMD, 3D graphics) AR
 - M6 = (bottle-sensor, 3D gesture) tangible UI
 - M7 = (GPS, localization) perceptual UI
 - M8 = (Tongue display, 2D shape)

M = <device, text>

eNTERFACE

The SIMILAR NoE
Summer Workshop
on Multimodal Interfaces

M = <camera-head, gesture>

M = <camera-token, gesture>

– Two-handed interaction => two modalities => multimodality

M = <bottle-sensor, gesture>

- TROC: a game based on the technique of barter
- M1 = <GPS, localization>
- M2= <magnetometer, orientation>

ACTIVE MODALITIES

 For inputs, active modalities are used by the user to issue a command to the computer such as a pedal to move a laparoscope in a CAS system.

PASSIVE - IMPLICIT MODALITIES

 Passive modalities are used to capture relevant information for enhancing the realization of the task, information that is not explicitly expressed by the user to the computer (PUI). For example tracking position.

- Human sense
- Spatial
 - Location
- Temporal
 - Transient/Persistent

- Dimension: 1D 2D ...
- O. Bernsen 93
 - Linguistic
 - Analogue
 - Arbitrary

Modality

Physical level

Modality = <device,

Logical level

interaction language >

Physical level

- Human sense: Sight
- Spatial:

Location = operating field

- Temporal: Persistent
- Logical level
 - 3D
 - Analogue
 - Non arbitrary

Physical level

- Human sense: Sight
- Spatial: Location = screen
- Temporal: Persistent
- Logical level
 - 2D
 - Non Analogue
 - Arbitrary

Multimodality: Design space

Set of atomic/combined modalities

Context

Modality

Combination of modalities

Information to be conveyed

Selection of one or several modalities

Laurence Nigay

32

Multimodality Combination of modalities

- Several studies
 - UOM 94 / TYCOON 95 / CARE 95 / MSM 96
- CARE properties
 - Relationships between Devices, Interaction languages and Tasks
 - C : Complementarity
 - A : Assignment
 - R : Redundancy
 - E : Equivalence

Multimodality Combination of modalities

TROC: a game based on the technique of barter

M1 = (Magnetometer, orientation)

M2 = (GPS, location)

Complementarity of M1 and M2 for selecting an object

Multimodality Combination of modalities

35

Laurence Nigay

Complementarity

Assignment

Redundancy

Equivalence

Permanent.

Transient

Multimodality Combination of modalities

CARE properties

Device

Total

Partial

Laurence Nigay

36

- CARE properties
- The formal expression of the CARE properties relies on the notions of state, goal, modality, and temporal relationships.
- A modality is an interaction method that an agent can use to reach a goal.

Redundancy: Modalities of a set M are used redundantly to reach state s' from state s, if they have the same expressive power (they are equivalent) and if all of them are used within the same temporal window, tw.

- Parallel (M, tw) \Leftrightarrow (Card (M) > 1) \land (Duration(tw) \neq ∞) \land (∃t∈tw · \forall m∈M · Active (m, t)
- Sequential (M, tw) \Leftrightarrow (Card (M) >1) \land (Duration (tw)≠∞) \land ($\forall t \in tw \cdot (\forall m, m' \in M \cdot Active(m, t) \Rightarrow \neg Active(m', t)) \land$ ($\forall m \in M \cdot \exists t \in tw \cdot Active(m, t)$)

Redundancy: Modalities of a set M are used redundantly to reach state s' from state s, if they have the same expressive power (they are equivalent) and if all of them are used within the same temporal window, tw.

Example: Multimodal form (airline information)

TYCOON

Each type of cooperation may be involved in several goals. For instance, redundancy between messages uttered and typed on the keyboard by the user may improve recognition. Only redundancy and complementarity need fusion which may use combination of several criteria (dotted arrows).

- TYCOON
- Logical formalism to describe the combination
- M = { P, D, R, C }
 - A process P

controlled by a set of parameters C (CI Input parameters
 CO Ouptut parameters)

- analyzing a set of data D
- to give a set of results R

- TYCOON M = { P, D, R, C }
- Redundancy

for each possible result r3 of modality M3, the results r1 obtained by modality M1 and r2 obtained by modality M2 have been merged by an intermediate process R and have the same value for an attribute att. The criterion used by R is a parameter of the redundancy definition and may be a combination of temporal coincidence, spatial coincidence...

- Several studies
 - UOM 94 / TYCOON 95 / CARE 95 / MSM 96
- New combination space
 - Different schemas and aspects of combinations
 - 5 aspects: temporal, spatial, articulatory, syntactic and semantic
 - 5 schemas: [Allen 83]

Combination schemas

Temporal	Anachronism	Sequence	Concomitance	Coincidence	Parallelism
Spatial	Separation	Adjacency	Intersection	Overlaid	Collocation
Articulatory	Independence	Fission	Fission Duplication	Partial Duplication	Total Duplication
Syntactic	Difference	Completion	Divergence	Extension	Twin
Semantic	Concurrency	Complementarity	Complementarity & Redundancy	Partial Redundancy	Total Redundancy

Combination aspects

Puzzle

M1 = <screen, 2D image>

M2 = <screen, color>

M3 = <mini-screen, crosses>

Puzzle

Combination of M2 = <wall, color> and M3 = <mini-screen, text>

-	Temporal	Anachronism	Sequence	Concomitance	Coincidence	Parallelism
•	Spatial	Separation	Adjacency	Intersection	Overlaid	Collocation
	Articulatory	Independence	Fission	Fission Duplication	Partial Duplication	Total Duplication
	Syntactic	Difference	Completion	Divergence	Extension	Twin
	Semantic	Concurrency	Complementarity	Complementarity & Redundancy	Partial Redundancy	Total Redundancy

Outline

- Terminology
 - Design space
 - Interaction modality
 - Multimodality: combination of modalities
- Fusion/Fission mechanisms
- ICARE platform for input/output multimodal interaction
- Grand Challenges

Implementational Issues: Fusion mechanism

- CARE properties
 - Complementarity Redundancy => Fusion of data
- Implementational issues
 - Reusable code
 - Domain independent
 - (description of the semantic outside the code)

Multimodal interaction handling

Multimodal expression

Fusion of objects from various modelling techniques (one modelling technique per interaction technique)

Common representation

Criteria for triggering the fusion

Laurence Nigay

5

Fusion mechanism: Common representation

Objects from various modelling techniques:

Common representation:

Fusion mechanism:

Fusion mechanism: Common representation

A melting pot: 2-D structure

 User's event mapped with the structural parts of a melting pot defines a new column.

Fusion mechanism: Criteria

Structural complementarity

- Time
 - Temporal window

Fusion mechanism: Three levels of fusion

- Microtemporal fusion
 - combining melting pots produced in parallel manner.

- Macrotemporal fusion
 - combining melting pots close in time (when the time intervals of these melting pots do not overlap but their temporal windows do overlap.
- Contextual fusion
 - based on the context (no temporal constraint)

Time

A generic fusion mechanism

Three levels of syntactic fusion

Fusion mechanism: conclusion

Two step process

- Criteria for triggering the fusion: time
- Representational format
 - Feature structures: melting pot / Quickset
 - Frames

Fusion mechanism: conclusion

- Representational format
 - Feature structures: melting pot / Quickset

Fusion mechanism: conclusion

Representational format

- Frames
- Embedded frame representing "below the red triangle"

Outline

- Terminology
 - Design space
 - Interaction modality
 - Multimodality: combination of modalities
- Fusion/Fission mechanisms
- ICARE platform for input/output multimodal interaction
- Grand Challenges

ICARE:

- A component-based approach for the design and development of multimodal interfaces (CHI'04)
 - elementary components that describe pure modalities
 - composition components (Complementarity, Redundancy and Equivalence)
- Editor to graphically assemble components
- Automatic generation of the code (fusion mechanism)

Properties of the selected component

MEMO RA / PDA

Aircraft cockpit simulator

Puzzle in RA

Multimodal IDentification

Outline

- Terminology
 - Design space
 - Interaction modality
 - Multimodality: combination of modalities
- Fusion/Fission mechanisms
- ICARE platform for input/output multimodal interaction
- Conclusion: Grand Challenges

Multimodality: HCI Challenges

- HCI challenge 1: Theory of modality and multimodality
 - a vast world of possibilitiesCharacterization of the modalities
- HCI challenge 2: Fusion mechanism
 - Criteria for triggering the fusion: time and ? ... space
 - Ambiguity and the fusion mechanism (interactive solution: human in the loop)
 - Uncertainty of the data processed by the fusion mechanism
- HCI challenge 3: Pervasive computing
 - Dynamicity
 - => Plugging at runtime new modalities to the fusion mechanism
- HCI challenge 4: Development tools
 - Tools for quickly developing multimodal interaction
 - ICARE, context-toolkit for passive-implicit modalities, quickset ...

Multimodaly: Path to evolution

Since 1980 "Put that there" paradigm

R. Bolt MIT

In the 80's, Brian Gaines introduced a model on how science technology develops over time

Brian Gaines's Model

Time ---

Laurence Nigay

Human-Computer Interaction (HCI) Interaction modality and Multimodality

Laurence Nigay

University of Grenoble CLIPS-IMAG Laboratory

User Interface Engineering Team

