SpeechWorks solutions from **ScanSoft**

Productivity without boundaries

Embedded Speech Recognition: State-of-art & Current Challenges

Presented by:

Dr. Ir. Christophe Couvreur

Plan

- A Refresher on ASR Technology
- Embedded ASR: Platforms & Applications
 - Automotive
 - Mobile
 - Game
- Constraints & Influence on State-of-the-Art
- Where is the Multi-Modality Today?
- Demos
- State-of-the-Art vs. Cutting Edge
- Research Challenges
- Conclusion & Discussion

A Typical Speech Recognizer

Feature Extraction Technology

- Extract features characteristics of the speech signal:
 - Time-frequency analysis of the input signal
- Remove unwanted influences
 - Noise cancellation
 - Normalization (e.g. for differences in microphone frequency responses)
 - Pitch
 - → keep only evolution of spectral shape (speech formants)
 - Asian language: extract pitch/tone information!
- Most common Mel-Frequency Cepstral Coefficients (MFCC)
 - Alternative: RASTA-PLP
 - Work from speech codec parameters on cellphones

MFCC Front-End

Acoustic Modeling Technology

- Statistical model of speech pronunciation (sequence of phonemes)
- Standard acoustic modeling:
 - HMMs (hidden Markov models)
 - Represent frequency and temporal statistical variations of specific sounds
 - Mixture of Gaussian pdfs is most common today
 - Parametrization: mean, covariances, weights
 - Many variants ("tying")
 - Context-dependent modeling w/ generalized tri-phones
 - Phonetic context decision tree to avoid combinatorial explosion of # of context-dependent phones
- Alternative: Hybrids Multi-layer Perceptrons & HMMs

Mixture of Gaussian Model

Figure 1: One dimensional Gaussian mixture pdf, consisting of 3 single Gaussians

Hidden Markov Model

Model for 1 phone in context

Phonetic Context Decision Tree

Figure 2: A phonetic decision tree for the second state of /k/.

Acoustic Modeling Technology (cont'd)

- **Speaker independent** vs speaker-dependent
- Trained on (very) large corpora of speech:
 - "There's no data like more data"
 - 100's or 1000's of speakers per languages
 - Adequate phonetic coverage
 - Environment & domain-matched if possible (field-collected)
- Speaker adaptation:
 - Adjust model parameters to specific speaker
 - MLLR (Maximum-Likelihood Linear Regression)
 - MAP (Maximum A Posteriori estimation)
- Rejection of out-of-vocabulary speech/noises.

Lexicon & G2P Technology

- Text → phoneme conversion:
 - Example: Couvreur → #ku.'vRE+R#
 - Lexicon (manually transcribed dictionaries)
 - Grapheme-to-Phoneme conversion algorithm
 - Shared w/ TTS systems
- G2P:
 - Rule-based:
 - Manually crafted or trained from corpora
 - Statistical systems
 - Decision trees
 - HMM-based
 - Combination of the two approaches, combined w/ "backbone" lexicon.

Grammar & Language Model Technology

- Formalism to describe acceptable sequence of words
- Grammar:
 - Explicitly describe all valid transitions

```
<start> : may I have a (mushroom | pepperoni | cheese)
pizza please ;
```


- Manually crafted, with dynamic slots
- Statistical language model (SLM):
 - All transitions are valid, some more likely than others.
 - Tri-grams (N-grams): $p(w_1 | w_2 w_3)$
 - Example: p('rose'|'stock prices') vs. p('fell'|'stock prices')
 - Trained on relevant text data

Search Technology

- Typically domain specific & optimized.
- Essentially variations on the Viterbi dynamic programming (DP) algorithm
 - Except for IBM's A*-search (envelope search) technique
- Optimizations to minimize CPU and memory impact
 - Pruning technique (beam search)
 - Pre-filtering or multi-pass techniques: using approximation in first pass then refine in subsequent passes on limite set of hypotheses
- Can supply alternative results:
 - N-best lists
 - Lattices

Post-processors

- Applications-specific, often tied into the grammar/search approach.
- Examples for SLM-based systems:
 - Inverse Text Normalization in dictation
 - "twenty first of july two thousand five" → 'July 21, 2005'
 - Robust parsing for information retrieval systems
 - "Can you tell me when the **United Airline** plane for **Paris** leave tomorrow morning, please?"
- Examples for Grammar-based systems:
 - Spelling for destination entry in GPS system
 - "S T U T G A R D" → 'Stuttgart'
 - Normalization of output format (NLU)
 - "Call 9 1 1" or "Call 9 eleven" → 'Call 911'
 - N-best reordering based on a priori knowledge (e.g. usage history)
- Dialog or fusion layers on top of the recognizer can be viewed as additional post-processing steps

Speech Markets

Network

AutoAttendant Call Center

> **Directory Assistance**

Medical Multimodal DA Transcription

> **Mobile Carrier Enhanced Services**

Voice Activated Dialing

Desktop Dictation

Accessibility

Dictation

Distributed **Dictation**

Navigation

Talking Dictionaries

Embedded

Telematics

Games

Dictation

Accessibility

Embedded

Embedded ASR Markets

- Automotive
 - Navigation systems
 - Telematics units
 - Hands-free car-kits
- Handhelds
 - Handsets
 - SmartPhones
 - PDA
- Game consoles
- Other Devices
 - Military
 - Industrial (e.g. wharehousing)
 - Language Learning

Today's Speech Applications?

- Moore's law makes it possible to deploy more complex speech technologies on embedded platforms
- Driving factors:
 - Technological performance of platforms
 - Customer acceptance of speech
 - Price: bill-of-material (BOM)
 - Length of development cycles/time-to-market
 - 2-5 years in automotive
 - shorter in handhelds (~1 year)

Volume Applications - Today

- Automotive:
 - Hands-free car kits, with continuous digit dialing & SD dialing
 - On-board C&C, including navigation system & telematics
- Handhelds:
 - SD dialing
 - SI name dialing & digit dialing
- Video Games
 - Simple C&C in games

Volume Applications - Tomorrow

Automotive:

- BlueTooth car kits, with SI name dialing
- Navigation with voice destination entry
- Control of MP3 player (e.g. iPod)

Handhelds

- Broader availability of voice-activated dialing
- Control of MP3 player
- (Continuous) dictation of SMS & e-mails
- Convergence of local & distributed speech processing

Video Games

- New interactive use of speech in games

Platform Capabilities - Car-kit

- DSP Processor:
 - TI C54xx, TI C55xx, TI OMAP, Infineon TriCore, ADI Blackfin, ...
 - 50-200 MIPS
- RAM:
 - Paginated internal memory: 64 KW
 - < 256—512 KB total
- No OS or very limited
- Fully allocated to speech (AEC/ASR)

Platform Capabilities - Navigation

- RISC Processor
 - Example: Renesas SH4, Motorola MPC 5xxx, TI OMAP, etc.
 - 70-80% available for speech
- RAM:
 - 32-64 MB
 - 4—16 MB available for speech
- DVD storage
- Embedded OS
 - Windows CE or ~Unix (Linux, QNX, VxWorks)
- Often combined w/ Telematics unit (e.g. BMW i-Drive)

Platform Capabilities - Handhelds

Handset

- Heavily segmented market
- ARM7 or ARM9 processor: 30—200 MHz
- RAM: 2—8 MB, with 256 KB—1 MB for speech (more for Dictation)
- $-8 \rightarrow 16 \text{ kHz}$
- Proprietary or Symbian OS
- SmartPhone / PocketPC
 - Intel Xscale, TI OMAP, ARM9 or ARM11 processor: 200-600 MHz
 - RAM: 16—64 MB, with up to 16 MB for speech (dictation)
 - Windows CE or Linux
- Flash storage

Platform Capabilities - Consoles

- Game consoles:
 - Sony PS2 & PSP
 - Microsoft Xbox, (360)
 - Nintendo Game Cube
- RISC Processor
 - Plus floating-point coprocessor
 - 300-700 MHz, up to 4 Gflops
 - Speech < 5—10%
- RAM:
 - 24-64 MB
 - Speech < 500 KB—1 MB
- DVD storage
- Next Generation (Sony PS3, Microsoft Xbox 360)
 - PowerPC processors (Cell 7x 3.2 GHz for PS3)
 - 256 MB RAM

Constraints Impact

Platform constraints have an impact on technological choices

• Examples:

- DSP's with fast absolute distance computation → use of Laplacian densities
- DSP's with paginated memory → use of 1.5-pass search/distance computation
- Limited memory → off-line tools for grammar compilation/G2P + limited dynamic run-time modifications (FSM)
- Limited resources → tuned acoustics models

Constraints Impact (cont'd)

Examples:

- Limited CPU & memory → special DPs (digits loop, long item lists [multi-pass & « Fast-match », lexical tree], ...)
- Limited memory → pruning techniques
- Real-time / vsynch processing → « hard » real-time processing (synchronous)

Application-level constraints have an impact too

• Examples:

- VDE → pronunciation databases for toponyms
- VAD → sharing of G2P with TTS

UI Issues in Car / Handheld

- PTT Barge-in
- Visual feedback/screen
 - → N-best lists for disambiguation in Navigation system
- System latencies
 - Data access (DVD)
 - Recognition
- Platform & accuracy restrictions vs Naturalness
 - Example: destination entry UI if max 3000 active entries in grammar?
- Fallback strategies
- Open vs. directed/constrained dialog
- External factors competing for attention:
 - Driver may pause due to traffic interrupts
 - Dialog state then?

Multimodality Today

Car:

- hands-free and possibly eye-free interface
- → focus on speech, with (optional) visual feedback
- Visual feedback: variable screen sizes
 - Car-kit: no screen
 - Navigation system: up to VGA color screen
- → "light" multi-modality, with visual/haptic & speech I/O synchronized but no combined.

Mobile:

- Screen and buttons of phone → haptic & visual modalities
- User will prefer faster/easier modality
- Example: SMS dictation by voice, error correction via display/keyboard
- → "light" multi-modality
- Game: part of game play design

GPS Destination Entry Demo

Video Game Demos

State-of-the-Art vs. Cutting Edge

Figure 1 NIST Benchmark Test History

A LOOK AT NIST'S BENCHMARK ASR TESTS: PAST, PRESENT, AND FUTURE David S. Pallett

Embedded ASR Challenges

Old Mantra:

- Improve accuracy
- Increase robustness
- Reduce footprint

Improve Accuracy

- How good are we today?
 - Example: Real CDD WER in car is between 2—4% in at various driving conditions and across speakers today
- Where is the user acceptance threshold?
 - We are certainly not high above!
- Accuracy may limit complexity of task and constrain UI
- Must operate within platform constraints

Improve Robustness

- Environment variability
 - Noise
 - Car in rainy weather, convertible!
 - Cellphones in public places
- HW variability
 - Microphone specs / actual production
- User variability!
 - Reduce « goats » percentage
 - Ideally, system should work for each and every user
 - Non-native speakers and accents
 - Multi-lingual systems
 - Address books
 - MP3 players with songs in various languages
 - Emotions (stress while driving, games)
 - Children voices

Reduce Footprint

- Why footprint?
 - Everything else being equal, footprint will drive BOM
 - Alternately, reducing footprint will allow to do more on given platform
- What footprint?
 - → CPU and/or memory!
- Examples:
 - Navigation: larger item lists to simplify UI design
 - Handset: allow continuous dictation instead of discrete dictation
 - Game: add speech in the remaining 2% of resources available on console

Conclusion

- Speech is back in embedded:
 - Expect to see more of it in your car, in your cellphone, in your living room (esp. if you have kids) in the coming 2 years
- But: seemingly simple applications remain challenging!
 - Not all basic problems are solved!
 - More research, better algorithms needed
 - Heavily coupled with engineering issues

Questions?

